Three-dimensional transesophageal echocardiography (TEE) provides real-time soft tissue information, but its use is hampered by its limited field of view. The mosaicing of multiple TEE views makes it possible to visualize a large structure, like the left atrium, in a single volume. To this end, an automatic registration method is required.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2015
Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for real-time visualization of the heart and monitoring of interventions. To improve the usability of 3-D TEE for intervention monitoring and catheter guidance, automated segmentation is desired. However, 3-D TEE segmentation is still a challenging task due to the complex anatomy with multiple cavities, the limited TEE field of view, and typical ultrasound artifacts.
View Article and Find Full Text PDFMinimally invasive interventions in the heart such as in electrophysiology are becoming more and more important in clinical practice. Currently, preoperative computed tomography angiography (CTA) is used to provide anatomic information during electrophysiology interventions, but this does not provide real-time feedback and burdens the patient with additional radiation and side effects of the contrast agent. Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for visualization of anatomic structures and instruments in real time, but some cavities, especially the left atrium, suffer from the limited coverage of the 3-D TEE volumes.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2015
Intraplaque neovascularization (IPN) is an important biomarker of atherosclerotic plaque vulnerability. As IPN can be detected by contrast enhanced ultrasound (CEUS), imaging-biomarkers derived from CEUS may allow early prediction of plaque vulnerability. To select the best quantitative imaging-biomarkers for prediction of plaque vulnerability, a systematic analysis of IPN with existing and new analysis algorithms is necessary.
View Article and Find Full Text PDFBackground: Dobutamine stress echocardiography (DSE) suffers from high interobserver and inter-institution variability in the diagnosis of myocardial ischemia. Therefore, we developed a three-dimensional (3D) analysis tool that makes it possible to anatomically align 3D rest and stress data systematically, to generate optimal, nonforeshortened standard anatomical cross sections and to analyse the images synchronized and side-by-side.
Aim Of The Study: To investigate whether this 3D analysis tool could improve interobserver agreement on myocardial ischemia during 3D DSE.
IEEE Trans Med Imaging
November 2008
Three-dimensional (3-D) stress echocardiography is a novel technique for diagnosing cardiac dysfunction. It involves evaluating wall motion of the left ventricle, by visually analyzing ultrasound images obtained in rest and in different stages of stress. Since the acquisitions are performed minutes apart, variabilities may exist in the visualized cross-sections.
View Article and Find Full Text PDFRationale And Objectives: We propose a semiautomatic endocardial border detection method for three-dimensional (3D) time series of cardiac ultrasound (US) data based on pattern matching and dynamic programming, operating on two-dimensional (2D) slices of the 3D plus time data, for the estimation of full cycle left ventricular volume, with minimal user interaction.
Materials And Methods: The presented method is generally applicable to 3D US data and evaluated on data acquired with the Fast Rotating Ultrasound (FRU-) Transducer, developed by Erasmus Medical Center (Rotterdam, the Netherlands), a conventional phased-array transducer, rotating at very high speed around its image axis. The detection is based on endocardial edge pattern matching using dynamic programming, which is constrained by a 3D plus time shape model.