Publications by authors named "Gerard Wright"

The most frequent determinant of aminoglycoside antibiotic resistance in Gram-positive bacterial pathogens is a bifunctional enzyme, aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2" (AAC(6')- aminoglycoside phosphotransferase-2", capable of modifying a wide selection of clinically relevant antibiotics through its acetyltransferase and kinase activities. The aminoglycoside acetyltransferase domain of the enzyme, AAC(6')-Ie, is the only member of the large AAC(6') subclass known to modify fortimicin A and catalyze O-acetylation. We have demonstrated through solvent isotope, pH, and site-directed mutagenesis effects that Asp-99 is responsible for the distinct abilities of AAC(6')-Ie.

View Article and Find Full Text PDF

A key contact in the active site of an aminoglycoside phosphotransferase enzyme (APH(3')-IIIa) is a pi-pi stacking interaction between Tyr42 and the adenine ring of bound nucleotides. We investigated the prevalence of similar Tyr-adenine contacts and found that many different protein systems employ Tyr residues in the recognition of the adenine ring. The geometry of these stacking interactions suggests that electrostatics play a role in the attraction between these aromatic systems.

View Article and Find Full Text PDF

The streptogramin antibiotics were discovered over 40 years ago but are only now emerging as important therapeutic agents for the treatment of infection caused by a variety of bacteria. The streptogramins consist of mixtures of two structurally distinct compounds, type A and type B, which are separately bacteriostatic, but bactericidal in appropriate ratios. These antibiotics act at the level of inhibition of translation through binding to the bacterial ribosome.

View Article and Find Full Text PDF

The glycopeptide antibiotics vancomycin and teicoplanin are vital components of modern anti-infective chemotherapy exhibiting outstanding activity against Gram-positive pathogens including members of the genera Streptococcus, Staphylococcus, and Enterococcus. These antibiotics also provide fascinating examples of the chemical and associated biosynthetic complexity exploitable in the synthesis of natural products by actinomycetes group of bacteria. We report the sequencing and annotation of the biosynthetic gene cluster for the glycopeptide antibiotic from Streptomyces toyocaensis NRRL15009, the first complete sequence for a teicoplanin class glycopeptide.

View Article and Find Full Text PDF

The aminoglycoside antibiotic resistance kinases (APHs) and the Ser/Thr/Tyr protein kinases share structural and functional homology but very little primary sequence conservation (<5%). A region of structural, but not amino acid sequence, homology is the nucleotide positioning loop (NPL) that closes down on the enzyme active site upon binding of ATP. This loop region has been implicated in facilitating phosphoryl transfer in protein kinases; however, there is no primary sequence conservation between APHs and protein kinases in the NPL.

View Article and Find Full Text PDF

The glycopeptide antibiotic-producing bacterium, Streptomyces toyocaensis NRRL 15009, has proteins phosphorylated on Ser, Thr, Tyr and His, implying the presence of a battery of associated kinases. We have identified the Ser/Thr protein kinase gene fragments stoPK-1, stoPK-2, stoPK-3 and stoPK-4 from S. toyocaensis NRRL 15009 by a polymerase chain reaction (PCR) strategy using oligonucleotide primers based on eukaryotic Ser/Thr and Tyr kinase sequences.

View Article and Find Full Text PDF

Glycopeptide antibiotics are integral components of the current antibiotic arsenal that is under strong pressures as a result of the emergence of a variety of resistance mechanisms over the past 15 years. Resistance has manifested itself largely through the expression of genes that encode proteins that reprogram cell wall biosynthesis and thus evade the action of the antibiotic in the enterococci, though recently new mechanisms have appeared that afford resistance and tolerance in the more virulent staphylococci and streptococci. Overcoming glycopeptide resistance will require innovative approaches to generate new antibiotics or otherwise to inhibit the action of resistance elements in various bacteria.

View Article and Find Full Text PDF