Asbestos poses a substantial environmental health risk, and biological treatment offers a promising approach to mitigate its impact by altering its chemical composition. However, the dynamics of microbial co-inoculation in asbestos bioremediation remain poorly understood. This study investigates the effect of microbial single cultures and co-cultures on modifying crocidolite and chrysotile fibers, focusing on the extraction of iron and magnesium.
View Article and Find Full Text PDFCompared with typical Earth soil, Martian soil and Mars simulant soils have distinct properties, including pH > 8.0 and high contents of silicates, iron-rich minerals, sulfates, and metal oxides. This unique soil matrix poses a major challenge for extracting microbial DNA.
View Article and Find Full Text PDFConventional agricultural activity reduces the uptake of the potent greenhouse gas methane by agricultural soils. However, the recently observed improved methane uptake capacity of agricultural soils after compost application is promising but needs mechanistic understanding. In this study, the methane uptake potential and microbiomes involved in methane cycling were assessed in green compost and household-compost with and without pre-digestion.
View Article and Find Full Text PDFAnthropogenic modification of soil systems has diverse impacts on food web interactions and ecosystem functioning. To understand the positive, neutral or adverse effects of agricultural practices on the associations of community members of soil microbes and microfaunal biomes, we characterized the effects of different fertilization types (organic, inorganic and a combination of organic and inorganic) on the food web active communities in the bulk soil and rhizosphere compartments in field conditions. We examined the influence of fertilization on (i) individual groups (bacteria, protozoa and fungi as microbe representatives and metazoans as microfauna representatives) and (ii) inter-kingdom interactions (focusing on the interactions between bacteria and eukaryotic groups) both neglecting and considering environmental factors in our analysis in combination with the microbial compositional data.
View Article and Find Full Text PDFRecent demonstrations of the role of plant-soil biota interactions have challenged the conventional view that vegetation changes are mainly driven by changing abiotic conditions. However, while this concept has been validated under natural conditions, our understanding of the long-term consequences of plant-soil interactions for above-belowground community assembly is restricted to mathematical and conceptual model projections. Here, we demonstrate experimentally that one-time additions of soil biota and plant seeds alter soil-borne nematode and plant community composition in semi-natural grassland for 20 years.
View Article and Find Full Text PDFSoil microbiome and multi-trophic relationships are essential for the stability and functioning of agroecosystems. However, little is known about how farming systems and alternative methods for controlling plant pathogens modulate microbial communities, soil mesofauna and plant productivity. In this study, we assessed the composition of eukaryotic microbial groups using a high-throughput sequencing approach (18S rRNA gene marker), the populations of parasitic and free-living nematodes, plant productivity and their inter-relationships in long-term conventional and organic farming systems.
View Article and Find Full Text PDFOrganic farming system and sustainable management of soil pathogens aim at reducing the use of agricultural chemicals in order to improve ecosystem health. Despite the essential role of microbial communities in agro-ecosystems, we still have limited understanding of the complex response of microbial diversity and composition to organic and conventional farming systems and to alternative methods for controlling plant pathogens. In this study we assessed the microbial community structure, diversity and richness using 16S rRNA gene next generation sequences and report that conventional and organic farming systems had major influence on soil microbial diversity and community composition while the effects of the soil health treatments (sustainable alternatives for chemical control) in both farming systems were of smaller magnitude.
View Article and Find Full Text PDFA long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the suppressiveness of soil toward Verticillium dahliae, as well as plant-pathogenic nematodes, was assessed, in addition to analyses of the abundances and community structures of members of the soil microbiota. The data revealed that chitin amendment had raised the suppressiveness of soil, in particular toward Verticillium dahliae, 9 months after the (second) treatment, extending to 2 years following treatment.
View Article and Find Full Text PDFField and laboratory research has repeatedly shown that free-living soil nematodes differ in their sensitivity to soil pollution. In this paper, we analyze whether nematode genera proved sensitive or tolerant toward heavy metals and organic pollutants in six long-term field experiments. We discuss overlaps between nematode physiological responses to heavy metals and to organic pollutants, which may explain why nematodes can exhibit co-tolerance toward several contaminants.
View Article and Find Full Text PDF