Publications by authors named "Gerard Tayeb"

Parallel transmission is a very promising method to tackle B field inhomogeneities at ultrahigh field in magnetic resonant imaging (MRI). This technique is however limited by the mutual coupling between the radiating elements. Here we propose to solve this problem by designing a passive magneto-electric resonator that we here refer to as stacked magnetic resonator (SMR).

View Article and Find Full Text PDF

Sunscreens protect from UV radiation, a carcinogen also responsible for sunburns and age-associated dryness. In order to anticipate the transmission of light through UV protection containing scattering particles, we implement electromagnetic models, using numerical methods for solving Maxwell's equations. After having our models validated, we compare several calculation methods: differential method, scattering by a set of parallel cylinders, or Mie scattering.

View Article and Find Full Text PDF

A dielectric structure with effective permittivity and permeability close to -1 operating for propagative waves at optical wavelengths is proposed. This structure is a two-dimensional photonic crystal with refractive index -1, coated by appropriate antireflection gratings. Numerical simulations involving a flat lens made of this optimized crystal illustrate the improvements that antireflection gratings can bring.

View Article and Find Full Text PDF

Modal methods often used to model lamellar gratings that include infinitely or highly conducting metallic parts encounter numerical instabilities in some situations. In this paper, the origin of these numerical instabilities is determined, and then a stable algorithm solving this problem is proposed. In order to complete this analysis, the different geometries that can be handled without numerical instabilities are clearly defined.

View Article and Find Full Text PDF

Lamellar gratings illuminated in conical (off-plane) mounting can achieve with suitable optogeometrical parameters (grating profile, angle of incidence and wavelength) a total absorption of light for any polarization provided there is only the zeroth propagating order. A detailed analysis shows that electromagnetic resonances are involved and their nature strongly depends on the polarization. When the incident electric field is parallel to the cross-section of the grating, the resonance is provoked by the excitation of surface plasmons.

View Article and Find Full Text PDF

We present a numerical study of whispering modes in gratings made of fibers. Due to the strong localization of the modes inside each fiber, it is possible to obtain narrow-band filters with very broad angular tolerance.

View Article and Find Full Text PDF

We propose a theoretical study of the optimization of one dimensional metal-dielectric metamaterials in order to approach -1 effective optical index. Taking into account actual values of dielectric constants of metal (silver) and dielectrics (HfO(2), GaP), and taking advantage of the dispersion relation of Bloch modes, we get a silver/HfO(2)metamaterial with suitable parameters that possesses a near -1 effective optical index for all angles of incidence at a visible wavelength for H-polarized light (i.e.

View Article and Find Full Text PDF

We investigate the properties of the resonant modes that occur in the transparency bands of two-dimensional finite-size Penrose-type photonic quasicrystals made of dielectric cylindrical rods. These modes stem from the natural local arrangements of the quasicrystal structure rather than, as originally thought, from fabrication-related imperfections. Examples of local density of states and field maps are shown for different wavelengths.

View Article and Find Full Text PDF

We investigate numerically the existence of photonic band gaps in woodpile crystals. We present a numerical method specifically developed to solve Maxwell's equations in such photonic structures. It is based upon a rigorous mathematical formulation and leads to a considerable improvement of the convergence speed as compared to other existing numerical methods.

View Article and Find Full Text PDF

The diffraction of an electromagnetic wave by a cylindrical object with arbitrary cross section is studied by taking advantage of recent progress in grating theories. The fast Fourier factorization method previously developed in Cartesian coordinates is extended to cylindrical coordinates thanks to the periodicity of both the diffracting object and the incident wave with respect to the polar angle theta. Thus Maxwell equations in a truncated Fourier space are derived and separated in TE and TM polarization cases.

View Article and Find Full Text PDF

We describe a way to combine the method of fictitious sources and the scattering-matrix method. The resulting method presents concurrently the advantages of these two rigorous methods. It is able to solve efficiently electromagnetic problems in which the structure is made up of a jacket containing an arbitrary set of scatterers.

View Article and Find Full Text PDF

Enhanced transmission through subwavelength slit gratings and hole arrays is studied in view of its application in the far-infrared and microwave domains. Because for perfectly conducting gratings, plasmon resonances are not expected to produce an enhanced transmission, other kinds of resonance, such as Fabry-Perot, waveguide-mode, and cavity-mode resonances, are studied. The possibility of reaching 100% transmittivity for some particular wavelengths is established when two superimposed identical gratings are used while each of them transmits approximately 1% off resonance.

View Article and Find Full Text PDF

Dielectric periodic media can possess a complex photonic band structure with allowed bands displaying strong dispersion and anisotropy. We show that for some frequencies the form of iso-frequency contours mimics the form of the first Brillouin zone of the crystal. A wide angular range of flat dispersion exists for such frequencies.

View Article and Find Full Text PDF

In this paper we present the first results on emission in metamaterial. We show how the specific properties of metallic composite material can modify the emission of an embedded source. We show that under proper conditions the energy radiated by a source embedded in a slab of metamaterial will be concentrated in a narrow cone in the surrounding media.

View Article and Find Full Text PDF

The dispersion relation of Bloch waves is derived from the properties of a single grating layer. A straightforward way to impose the Bloch condition leads to the calculation of the eigenvalues of the transfer matrix through the single grating layer. Unfortunately, the transfer-matrix algorithm is known to be unstable as a result of the growing evanescent waves.

View Article and Find Full Text PDF

An electromagnetic study of the staircase approximation of arbitrary shaped gratings is conducted with three different grating theories. Numerical results on a deep aluminum sinusoidal grating show that the staircase approximation introduces sharp maxima in the local field map close to the edges of the profile. These maxima are especially pronounced in TM polarization and do not exist with the original sinusoidal profile.

View Article and Find Full Text PDF