Assessment of volume status in critically ill patients poses a challenge to clinicians. Measuring changes in the inferior vena cava (IVC) diameter using ultrasound is becoming a standard tool to assess volume status. Ultrasound requires physicians with significant training and specialized expensive equipment.
View Article and Find Full Text PDFBackground: Hemorrhage is the leading cause of death for both civilian and battlefield injuries. Hemorrhage from pelvic vascular wounds is of concern since it is difficult to control before surgical intervention. This has resulted in renewed interest in developing presurgical endovascular approaches to hemorrhage control.
View Article and Find Full Text PDFJ Trauma Acute Care Surg
February 2014
Background: The ability to monitor the patient of hemorrhage noninvasively remains a challenge. We examined the ability of resonance Raman spectroscopy to monitor tissue hemoglobin oxygenation (RRS-StO2) during hemorrhage and compared its performance with conventional invasive mixed venous (SmvO2) and central venous (ScvO2) hemoglobin oxygen saturation as well as with near-infrared spectroscopy tissue hemoglobin oxygenation (NIRS-StO2).
Methods: Five male swine were anesthetized and instrumented followed by hemorrhage at a rate of 30 mL/min for 60 minutes.
Background: Logistics complicate fluid resuscitation of traumatic shock on the battlefield. Traumatic shock can result in oxygen debt (O(2)D) accumulation that is fatal. However, the ability of fluid strategies to repay O(2)D are not commonly reported.
View Article and Find Full Text PDFKnowledge of central venous pressure (CVP) is considered valuable in the assessment and treatment of various states of critical illness and injury. We tested a noninvasive means of determining CVP (NICVP) by monitoring upper arm blood flow changes in response to externally applied circumferential pressure to the upper arm veins. Thirty-six patients who were undergoing CVP monitoring as part of their care had NICVP determined and compared with CVP.
View Article and Find Full Text PDFBackground: Gaining hemostatic control of lethal vascular injuries sustained in combat using topical agents remains a challenge. Recent animal testing using a lethal arterial injury model has demonstrated that QuikClot zeolite granules (QCG) and the HemCon chitosan bandage (HC) are not capable of providing hemostasis and improving survival over the Army gauze field bandage (AFB). We have developed a new hemostatic agent consisting of a granular combination of a smectite mineral and a polymer (WoundStat) capable of producing hemostasis in the face of high-pressure arterial bleeding.
View Article and Find Full Text PDF