The thalamic output during different behavioral states is strictly controlled by the firing modes of thalamocortical neurons. During sleep, their hyperpolarized membrane potential allows activation of the T-type calcium channels, promoting rhythmic high-frequency burst firing that reduces sensory information transfer. In contrast, in the waking state thalamic neurons mostly exhibit action potentials at low frequency (i.
View Article and Find Full Text PDFIn vivo intracellular electrophysiology offers the unique possibility of listening to the "synaptic rumor " of the cortical network, captured by a recording electrode in a single V1 cell. It allows one to reconstruct the distribution of input sources in space and time, i.e.
View Article and Find Full Text PDF