Publications by authors named "Gerard R Ridgway"

Objective: To investigate cortical microstructural measures from diffusion MRI as "neurodegeneration" markers that could improve prognostic accuracy in mild cognitive impairment (MCI).

Methods: The prognostic power of Amyloid/Tau/Neurodegeneration (ATN) biomarkers to predict progression from MCI to AD or non-AD dementia was investigated. Ninety patients underwent clinical evaluation (follow-up interval 32 ± 18 months), lumbar puncture, and MRI.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is characterized by structural and functional dysfunction involving the Default Mode Network (DMN), for which the Precuneus (PC) is a key node. We proposed a randomized double-blind pilot study to determine neurobiological changes after 24 weeks of PC-rTMS in patients with mild-to-moderate AD. Sixteen patients were randomly assigned to SHAM or PC-rTMS, and received an intensive 2-weeks course with daily rTMS sessions, followed by a maintenance phase in which rTMS has been applied once a week.

View Article and Find Full Text PDF

Background: There has been increasing interest in cortical microstructure as a complementary and earlier measure of neurodegeneration than macrostructural atrophy, but few papers have related cortical diffusion imaging to post-mortem neuropathology. This study aimed to characterise the associations between the main Alzheimer's disease (AD) neuropathological hallmarks and multiple cortical microstructural measures from in vivo diffusion MRI. Comorbidities and co-pathologies were also investigated.

View Article and Find Full Text PDF

Background: Quantitative imaging studies of the pancreas have often targeted the three main anatomical segments, head, body, and tail, using manual region of interest strategies to assess geographic heterogeneity. Existing automated analyses have implemented whole-organ segmentation, providing overall quantification but failing to address spatial heterogeneity.

Purpose: To develop and validate an automated method for pancreas segmentation into head, body, and tail subregions in abdominal MRI.

View Article and Find Full Text PDF

Magnetic resonance imaging with magnetic resonance cholangiopancreatography (MRI-MRCP) in primary sclerosing cholangitis (PSC) is currently based on qualitative assessment and has high interobserver variability. We investigated the utility and performance of quantitative metrics derived from a three-dimensional biliary analysis tool in adult patients with PSC. MRI-MRCP, blood-based biomarkers, and FibroScan were prospectively performed in 80 participants with large-duct PSC and 20 healthy participants.

View Article and Find Full Text PDF

Background: Frontotemporal lobar degeneration (FTLD) is a neuropathological construct with multiple clinical presentations, including the behavioural variant of frontotemporal dementia (bvFTD), primary progressive aphasia-both non-fluent variant (nfvPPA) and semantic variant (svPPA)-progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), characterised by the deposition of abnormal tau protein in the brain. A major challenge for treating FTLD is early diagnosis and accurate discrimination among different syndromes. The main goal here was to investigate the cortical architecture of FTLD syndromes using cortical diffusion tensor imaging (DTI) analysis and to test its power to discriminate between different clinical presentations.

View Article and Find Full Text PDF

Objectives: To study the association of MRCP+ parameters with biochemical scoring systems and MR elastography (MRE) in primary sclerosing cholangitis (PSC). To evaluate the incremental value of combining MRCP+ with morphological scores in associating with biochemical scores.

Methods And Materials: MRI images, liver stiffness measurements by MRE, and biochemical testing of 65 patients with PSC that were retrospectively enrolled between January 2014 and December 2015 were obtained.

View Article and Find Full Text PDF

Background: Magnetic resonance cholangiopancreatography (MRCP) is an important tool for noninvasive imaging of biliary disease, however, its assessment is currently subjective, resulting in the need for objective biomarkers.

Purpose: To investigate the accuracy, scan/rescan repeatability, and cross-scanner reproducibility of a novel quantitative MRCP tool on phantoms and in vivo. Additionally, to report normative ranges derived from the healthy cohort for duct measurements and tree-level summary metrics.

View Article and Find Full Text PDF

Can we change our perception by controlling our brain activation? Awareness during binocular rivalry is shaped by the alternating perception of different stimuli presented separately to each monocular view. We tested the possibility of causally influencing the likelihood of a stimulus entering awareness. To do this, participants were trained with neurofeedback, using realtime functional magnetic resonance imaging (rt-fMRI), to differentially modulate activation in stimulus-selective visual cortex representing each of the monocular images.

View Article and Find Full Text PDF

Age is not only the greatest risk factor for Alzheimer's disease (AD) but also a key modifier of disease presentation and progression. Here, we investigate how longitudinal atrophy patterns vary with age in mild cognitive impairment (MCI) and AD. Data comprised serial longitudinal 1.

View Article and Find Full Text PDF

Objective: Imaging is recommended to support the clinical diagnoses of dementias, yet imaging research studies rarely have pathological confirmation of disease. This study aims to characterise patterns of brain volume loss in six primary pathologies compared with controls and to each other.

Methods: One hundred and eighty-six patients with a clinical diagnosis of dementia and histopathological confirmation of underlying pathology, and 73 healthy controls were included in this study.

View Article and Find Full Text PDF

Here we introduce a multivariate framework for characterising longitudinal changes in structural MRI using dynamical systems. The general approach enables modelling changes of states in multiple imaging biomarkers typically observed during brain development, plasticity, ageing and degeneration, e.g.

View Article and Find Full Text PDF

Purpose: MRI has become an essential tool for prion disease diagnosis. However there exist only a few serial MRI studies of prion patients, and these mostly used whole brain summary measures or region of interest based approaches. We present here the first longitudinal voxel-based morphometry (VBM) study in prion disease.

View Article and Find Full Text PDF

This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial volumetric 1.5-T MRI.

View Article and Find Full Text PDF

Voxel-based analysis of diffusion MRI data is increasingly popular. However, most white matter voxels contain contributions from multiple fibre populations (often referred to as crossing fibres), and therefore voxel-averaged quantitative measures (e.g.

View Article and Find Full Text PDF

Permutation tests are increasingly being used as a reliable method for inference in neuroimaging analysis. However, they are computationally intensive. For small, non-imaging datasets, recomputing a model thousands of times is seldom a problem, but for large, complex models this can be prohibitively slow, even with the availability of inexpensive computing power.

View Article and Find Full Text PDF

Accurately distinguishing between different degenerative dementias during life is challenging but increasingly important with the prospect of disease-modifying therapies. Molecular biomarkers of dementia pathology are becoming available, but are not widely used in clinical practice. Conversely, structural neuroimaging is recommended in the evaluation of cognitive impairment.

View Article and Find Full Text PDF

In brain regions containing crossing fibre bundles, voxel-average diffusion MRI measures such as fractional anisotropy (FA) are difficult to interpret, and lack within-voxel single fibre population specificity. Recent work has focused on the development of more interpretable quantitative measures that can be associated with a specific fibre population within a voxel containing crossing fibres (herein we use fixel to refer to a specific fibre population within a single voxel). Unfortunately, traditional 3D methods for smoothing and cluster-based statistical inference cannot be used for voxel-based analysis of these measures, since the local neighbourhood for smoothing and cluster formation can be ambiguous when adjacent voxels may have different numbers of fixels, or ill-defined when they belong to different tracts.

View Article and Find Full Text PDF

Background: The extent and clinical relevance of grey matter (GM) pathology in multiple sclerosis (MS) are increasingly recognised. GM pathology may present as focal lesions, which can be visualised using double inversion recovery (DIR) MRI, or as diffuse pathology, which can manifest as atrophy. It is, however, unclear whether the diffuse atrophy centres on focal lesions.

View Article and Find Full Text PDF
Article Synopsis
  • Crowding affects the ability to recognize objects amid clutter and particularly impacts visual perception in those with neurodegenerative diseases affecting the occipital cortices.
  • In a study comparing individuals with posterior cortical atrophy, Alzheimer’s disease, and healthy controls, researchers found that patients with posterior cortical atrophy struggled more with letter identification in tightly spaced scenarios, indicating a significant impact of crowding.
  • The findings imply that crowding may operate as a pre-attentive process influenced by structural brain changes, specifically indicating that the impaired accuracy aligns with averaging effects rather than direct substitution of visual elements.
View Article and Find Full Text PDF

Total intracranial volume (TIV/ICV) is an important covariate for volumetric analyses of the brain and brain regions, especially in the study of neurodegenerative diseases, where it can provide a proxy of maximum pre-morbid brain volume. The gold-standard method is manual delineation of brain scans, but this requires careful work by trained operators. We evaluated Statistical Parametric Mapping 12 (SPM12) automated segmentation for TIV measurement in place of manual segmentation and also compared it with SPM8 and FreeSurfer 5.

View Article and Find Full Text PDF

We report the first stochastic dynamic causal modeling (sDCM) study of effective connectivity within the default mode network (DMN) in schizophrenia. Thirty-three patients (9 women, mean age = 25.0 years, SD = 5) with a first episode of psychosis and diagnosis of schizophrenia--according to the Diagnostic and Statistic Manual of Mental Disorders, 4th edition, revised criteria--were studied.

View Article and Find Full Text PDF

Why only certain patients develop debilitating pain after spinal chord injury and whether structural brain changes are implicated remain unknown. The aim of this study was to determine if patients with chronic, neuropathic below-level pain have specific cerebral changes compared to those who remain pain-free. Voxel-based morphometry of high resolution, T1-weighted images was performed on three subject groups comprising patients with pain (SCI-P, n = 18), patients without pain (SCI-N, n = 12) and age- and sex-matched controls (n = 18).

View Article and Find Full Text PDF

Permutation methods can provide exact control of false positives and allow the use of non-standard statistics, making only weak assumptions about the data. With the availability of fast and inexpensive computing, their main limitation would be some lack of flexibility to work with arbitrary experimental designs. In this paper we report on results on approximate permutation methods that are more flexible with respect to the experimental design and nuisance variables, and conduct detailed simulations to identify the best method for settings that are typical for imaging research scenarios.

View Article and Find Full Text PDF