Stargardt disease type 1 (STGD1), the most common form of hereditary macular dystrophy, can be caused by biallelic combinations of over 2200 variants in the ABCA4 gene. This leads to reduced or absent ABCA4 protein activity, resulting in toxic metabolite accumulation in the retina and damage of the retinal pigment epithelium and photoreceptors. Approximately 21% of all ABCA4 variants that contribute to disease influence ABCA4 pre-mRNA splicing.
View Article and Find Full Text PDFBackground: ABCA4, the gene implicated in Stargardt disease (STGD1), contains 50 exons, of which 17 contain multiples of three nucleotides. The impact of in-frame exon skipping is yet to be determined. Antisense oligonucleotides (AONs) have been investigated in Usher syndrome-associated genes to induce skipping of in-frame exons carrying severe variants and mitigate their disease-linked effect.
View Article and Find Full Text PDFThe atypical antipsychotic drug olanzapine is prescribed despite clinical studies on olanzapine treatment showing mixed results on treatment efficacy in anorexia nervosa. We investigated the effect of systemic and intranasal administration of olanzapine in the activity-based anorexia (ABA) model. Rats were habituated to a running wheel and exposed to the ABA model while treated with olanzapine.
View Article and Find Full Text PDFStargardt disease type 1 (STGD1) is the most common hereditary form of maculopathy and remains untreatable. STGD1 is caused by biallelic variants in the gene, which encodes the ATP-binding cassette (type 4) protein (ABCA4) that clears toxic byproducts of the visual cycle. The c.
View Article and Find Full Text PDFNonsense mutations create premature termination codons (PTCs), activating the nonsense-mediated mRNA decay (NMD) pathway to degrade most PTC-containing mRNAs. The undegraded mRNA is translated, but translation terminates at the PTC, leading to no production of the full-length protein. This work presents targeted PTC pseudouridylation, an approach for nonsense suppression in human cells.
View Article and Find Full Text PDFHuntington's disease (HD) is a late-onset neurological disorder for which therapeutics are not available. Its key pathological mechanism involves the proteolysis of polyglutamine-expanded (polyQ-expanded) mutant huntingtin (mHTT), which generates N-terminal fragments containing polyQ, a key contributor to HD pathogenesis. Interestingly, a naturally occurring spliced form of HTT mRNA with truncated exon 12 encodes an HTT (HTTΔ12) with a deletion near the caspase-6 cleavage site.
View Article and Find Full Text PDFCEP290-associated Leber congenital amaurosis type 10 (LCA10) is a retinal disease resulting in childhood blindness. Sepofarsen is an RNA antisense oligonucleotide targeting the c.2991+1655A>G variant in the CEP290 gene to treat LCA10.
View Article and Find Full Text PDFMutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). The two most recurrent mutations in USH2A, c.2299delG and c.
View Article and Find Full Text PDFDystrophic epidermolysis bullosa (DEB) is a blistering skin disease caused by mutations in the gene COL7A1 encoding collagen VII. DEB can be inherited as recessive DEB (RDEB) or dominant DEB (DDEB) and is associated with a high wound burden. Perpetual cycles of wounding and healing drive fibrosis in DDEB and RDEB, as well as the formation of a tumor-permissive microenvironment.
View Article and Find Full Text PDFCystic fibrosis (CF) is caused by mutations in the gene encoding the epithelial chloride channel CF transmembrane conductance regulator (CFTR) protein. The most common mutation is a deletion of three nucleotides leading to the loss of phenylalanine at position 508 (p.Phe508del) in the protein.
View Article and Find Full Text PDFPhotoreceptor ciliopathies constitute the most common molecular mechanism of the childhood blindness Leber congenital amaurosis. Ten patients with Leber congenital amaurosis carrying the c.2991+1655A>G allele in the ciliopathy gene centrosomal protein 290 (CEP290) were treated (ClinicalTrials.
View Article and Find Full Text PDFCD8(+) T cells have the potential to attack and eradicate cancer cells. The efficacy of therapeutic vaccines against cancer, however, lacks defined immune correlates of tumor eradication after (therapeutic) vaccination based on features of Ag-specific T cell responses. In this study, we examined CD8(+) T cell responses elicited by various peptide and TLR agonist-based vaccine formulations in nontumor settings and show that the formation of CD62L(-)KLRG1(+) effector-memory CD8(+) T cells producing the effector cytokines IFN-γ and TNF predicts the degree of therapeutic efficacy of these vaccines against established s.
View Article and Find Full Text PDFBackground: Local intramuscular administration of the antisense oligonucleotide PRO051 in patients with Duchenne's muscular dystrophy with relevant mutations was previously reported to induce the skipping of exon 51 during pre-messenger RNA splicing of the dystrophin gene and to facilitate new dystrophin expression in muscle-fiber membranes. The present phase 1-2a study aimed to assess the safety, pharmacokinetics, and molecular and clinical effects of systemically administered PRO051.
Methods: We administered weekly abdominal subcutaneous injections of PRO051 for 5 weeks in 12 patients, with each of four possible doses (0.
Myotonic dystrophy type 1 (DM1) is caused by toxicity of an expanded, noncoding (CUG)n tract in DM protein kinase (DMPK) transcripts. According to current evidence the long (CUG)n segment is involved in entrapment of muscleblind (Mbnl) proteins in ribonuclear aggregates and stabilized expression of CUG binding protein 1 (CUGBP1), causing aberrant premRNA splicing and associated pathogenesis in DM1 patients. Here, we report on the use of antisense oligonucleotides (AONs) in a therapeutic strategy for reversal of RNA-gain-of-function toxicity.
View Article and Find Full Text PDFPatients with Mendelian susceptibility to mycobacterial disease have severe, recurrent life-threatening infections with otherwise poorly pathogenic mycobacteria and salmonellae. The extreme susceptibility is the result of genetic defects in the interleukin-12/interferon-gamma (IL-12/IFN-gamma) pathway. The infections are difficult to treat, and therapeutic options are limited.
View Article and Find Full Text PDFBackground: Antisense-mediated exon skipping is a putative treatment for Duchenne muscular dystrophy (DMD). Using antisense oligonucleotides (AONs), the disrupted DMD reading frame is restored, allowing generation of partially functional dystrophin and conversion of a severe Duchenne into a milder Becker muscular dystrophy phenotype. In vivo studies are mainly performed using 2'-O-methyl phosphorothioate (2OMePS) or morpholino (PMO) AONs.
View Article and Find Full Text PDFBackground: Duchenne's muscular dystrophy is associated with severe, progressive muscle weakness and typically leads to death between the ages of 20 and 35 years. By inducing specific exon skipping during messenger RNA (mRNA) splicing, antisense compounds were recently shown to correct the open reading frame of the DMD gene and thus to restore dystrophin expression in vitro and in animal models in vivo. We explored the safety, adverse-event profile, and local dystrophin-restoring effect of a single, intramuscular dose of an antisense oligonucleotide, PRO051, in patients with this disease.
View Article and Find Full Text PDFWe report the synthesis of novel artificial ribonucleases with potentially improved cellular uptake. The design of trifunctional conjugates 1a and 1b is based on the specific RNA-recognizing properties of PNA, the RNA-cleaving abilities of diethylenetriamine (DETA), and the peptide (KFF)(3)K for potential uptake into E. coli.
View Article and Find Full Text PDFLinkage studies indicate close associations of certain HLA alleles with autoimmune diseases. To better understand how specific HLA alleles are related to disease pathogenesis, we have generated an HLA DR3/DQ2 transgenic mouse utilizing a 550-kb yeast artificial chromosome (YAC) construct containing the complete DRalpha, DRbeta1, DRbeta3, DQalpha, and DQbeta regions. The transgenic mouse (4D1/C2D) in an I-Abeta(o) background appears healthy with no signs of autoimmune diseases.
View Article and Find Full Text PDF