Publications by authors named "Gerard M Sullivan"

Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2-like 1 (BCL-X(L)), which has shown clinical efficacy in some BCL-2-dependent hematological cancers.

View Article and Find Full Text PDF

A novel series of 5,10-dihydro-dibenzo[b,e][1,4]diazepin-11-ones have been synthesized as potent and selective checkpoint kinase 1 (Chk1) inhibitors via structure-based design. Aided by protein X-ray crystallography, medicinal chemistry efforts led to the identification of compound 46d, with potent enzymatic activity against Chk1 kinase. While maintaining a low cytotoxicity of its own, compound 46d exhibited a strong ability to abrogate G2 arrest and increased the cytotoxicity of camptothecin by 19-fold against SW620 cells.

View Article and Find Full Text PDF

Ras mutation has been detected in approximately 20-30% of all human carcinomas, primarily in pancreatic, colorectal, lung and bladder carcinomas. The indirect inhibition of Ras activity by inhibiting farnesyltransferase (FTase) function is one therapeutic intervention to control tumor growth. Here we report the preclinical anti-tumor activity of our most advanced FTase inhibitor (FTI), ABT-100, and a direct comparison with the current clinical candidates.

View Article and Find Full Text PDF

Purpose: To evaluate the preclinical pharmacokinetics, antitumor efficacy, and mechanism of action of a novel orally active farnesyltransferase inhibitor, ABT-100.

Experimental Design: In vitro sensitivity of a panel of human cell lines was determined using proliferation and clonogenic assays. In vivo efficacy of ABT-100 was evaluated in xenograft models (flank or orthotopic) by assessing angiogenesis, proliferation, and apoptosis in correlation with pharmacokinetics.

View Article and Find Full Text PDF

Farnesyltransferase inhibitors (FTIs) have been developed as potential anti-cancer agents due to their efficacy in blocking malignant growth in a variety of murine models of human tumors. To that end, we have developed a series of pyridone farnesyltransferase inhibitors with potent in vitro and cellular activity. The synthesis, SAR and biological properties of these compounds will be discussed.

View Article and Find Full Text PDF

Inhibitors of farnesyltransferase are effective against a variety of tumors in mouse models of cancer. Clinical trials to evaluate these agents in humans are ongoing. In our effort to develop new farnesyltransferase inhibitors, we have discovered bioavailable aryl tetrahydropyridines that are potent in cell culture.

View Article and Find Full Text PDF

Inhibitors of farnesyltransferase are effective against a variety of tumors in mouse models of cancer. Clinical trials to evaluate these agents in humans are ongoing. In our effort to develop new farnesyltransferase inhibitors, we have discovered a series of aryl tetrahydropyridines that incorporate substituted glycine, phenylalanine and histidine residues.

View Article and Find Full Text PDF