A scalable (<130 nm) resistive switching memristor that features both filamentary and interfacial switching aimed at neuromorphic computing is developed in this study. The typically perceived noise or volatility was effectively harnessed as a controlled mechanism for interfacial switching. The multilayer structure for the proposed memristor enhances switching stability by curbing ionic overmigration and mitigating leakage paths.
View Article and Find Full Text PDFElectric field control of spin-orbit torque (SOT) exhibits promising potential in advanced spintronic devices through interfacial modulation. In this work, we investigate the influence of electric field and interfacial oxidation on SOT efficiency in annealed Ta/CoFeB/HfOheterostructures. By varying annealing temperatures, the damping-like SOT efficiency reaches its peak at the annealing temperature of 320 °C, with an 80% field-free magnetization switching ratio induced by SOT having been demonstrated.
View Article and Find Full Text PDFExploring multiple states based on the domain wall (DW) position has garnered increased attention for in-memory computing applications, particularly focusing on the utilization of spin-orbit torque (SOT) to drive DW motion. However, devices relying on the DW position require efficient DW pinning. Here, we achieve granular magnetization switching by incorporating an HfOx insertion layer between the Co/Ti interface.
View Article and Find Full Text PDFWe investigate the functionality of NbO-based selector devices on a flexible substrate. It was observed that the failure mechanism of cyclic tensile strain is from the disruption of atom arrangements, which essentially led to the crack formation of the film. When under cyclic compressive strain, buckling delamination of the film occurs as the compressed films have debonded from their neighboring layers.
View Article and Find Full Text PDFEmerging technologies, i.e., spintronics, 2D materials, and memristive devices, have been widely investigated as the building block of neuromorphic computing systems.
View Article and Find Full Text PDFThis work demonstrates oscillation frequency modulation in a NbO-based relaxation oscillator device, in which the oscillation frequency increases with operating temperature and source voltage, and decreases with load resistance. An annealing-induced oxygen diffusion at 373 K was carried out to optimize the stoichiometry of the bulk NbOto achieve consistent oscillation frequency shift with device temperature. The device exhibits stable self-sustained oscillation in which the frequency can be modulated between 2 and 33 MHz, and a wider operating voltage range can be obtained.
View Article and Find Full Text PDFShort-term plasticity (STP) is an important synaptic characteristic in the hardware implementation of artificial neural networks (ANN), as it enables the temporal information processing (TIP) capability. However, the STP feature is rather challenging to reproduce from a single nonvolatile resistive random-access memory (RRAM) element, as it requires a certain degree of volatility. In this work, a Pt/TiO/Pt exponential selector is introduced not only to suppress the sneak current but also to enable the TIP feature in a one selector-one RRAM (1S1R) synaptic device.
View Article and Find Full Text PDF3D printing via vat photopolymerization (VP) is a highly promising approach for fabricating magnetic soft millirobots (MSMRs) with accurate miniature 3D structures; however, magnetic filler materials added to resin either strongly interfere with the photon energy source or sediment too fast, resulting in the nonuniformity of the filler distribution or failed prints, which limits the application of VP. To this end, a circulating vat photopolymerization (CVP) platform that can print MSMRs with high uniformity, high particle loading, and strong magnetic response is presented. After extensive characterization of materials and 3D printed parts, it is found that SrFe O is an ideal magnetic filler for CVP and can be printed with 30% particle loading and high uniformity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
Field-free magnetization switching is critical towards practical, integrated spin-orbit torque (SOT)-driven magnetic random-access memory with perpendicular magnetic anisotropy. Our work proposes a technique to modulate the spin reflection and spin density of states within a heavy-metal Pt through interfacing with a dielectric MgO layer. We demonstrate tunability of the effective out-of-plane spin torque acting on the ferromagnetic Co layer, enabling current-induced SOT magnetization switching without the assistance of an external magnetic field.
View Article and Find Full Text PDFThe spin-orbit torque (SOT) effective fields, namely field-like and damping-like terms, depend on the thicknesses of heavy metal (HM) and ferromagnetic metal (FM) layers, in a stack comprising of HM/FM/HM or oxide. In this work, we report on the dependence of the SOT effective fields on the magnetization uniformity in the wires comprising of Ta/Co/Pt layer structure. SOT dependence on magnetization uniformity dependence was investigated by concurrent variation of the magnetization uniformity in Co layer and characterization of the SOT effective fields in each wire which excludes the layer thickness dependence influences.
View Article and Find Full Text PDF