Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation.
View Article and Find Full Text PDFBackground: In chickens, three mutant alleles have been reported at the C locus, including the albino mutation, and the recessive white mutation, which is characterized by white plumage and pigmented eyes. The albino mutation was found to be a 6 bp deletion in the tyrosinase (TYR) gene. The present work describes an approach to identify the structural rearrangement in the TYR gene associated with the recessive white mutation.
View Article and Find Full Text PDF