Publications by authors named "Gerard Bengua"

The Be(γ,n) neutrons with the energies at 21-24 keV generated by 1.691 MeV photons from Sb was investigated as a source of epithermal neutrons for BNCT, using PHITS code. A beam shaping assembly composed of 13 mm thick Be target, a gamma ray shield made of 30 cm thick Bi, and a reflector of 30 cm thick Pb satisfied the beam requirements of IAEA-TECDOC-1223.

View Article and Find Full Text PDF

This study aims to demonstrate the feasibility of a method for estimating the strength of a moving brachytherapy source during implantation in a patient. Experiments were performed under the same conditions as in the actual treatment, except for one point that the source was not implanted into a patient. The brachytherapy source selected for this study was 125I with an air kerma strength of 0.

View Article and Find Full Text PDF

This study investigated the optimum composition of the MAGAT polymer gel which is to be used in the quality assurance measurement of the thermal neutron, fast neutron and gamma ray components in the irradiation field used for boron neutron capture therapy at the Kyoto University Reactor. Simulations using the PHITS code showed that when combined with the gel, Li concentrations of 0, 10 and 100ppm were found to be potentially usable.

View Article and Find Full Text PDF

This study sought to demonstrate the feasibility of estimating the source strength during implantation in brachytherapy. The requirement for measuring the strengths of the linked sources was investigated. The utilized sources were (125)I with air kerma strengths of 8.

View Article and Find Full Text PDF

The near threshold (7)Li(p,n)(7)Be neutrons generated by incident proton energy having Gaussian distribution with mean energies from 1.85 to 1.95MeV, were studied as a practical neutron source for BNCT wherein an RFQ accelerator and a thick Li-target are used.

View Article and Find Full Text PDF

Purpose: We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PET(CONV)WB) versus the new brain (BR) PET system using semiconductor detectors (PET(NEW)BR).

Methods And Materials: Twelve patients with NPC were enrolled in this study. [(18)F]Fluorodeoxyglucose-PET images were acquired using both the PET(NEW)BR and the PET(CONV)WB system on the same day.

View Article and Find Full Text PDF

The purpose of this study was to evaluate a custom portal image - digitally reconstructed radiograph (DRR) registration software application. The software works by transforming the portal image into the coordinate space of the DRR image using three control points placed on each image by the user, and displaying the fused image. In order to test statistically that the software actually improves setup error estimation, an intra- and interobserver phantom study was performed.

View Article and Find Full Text PDF

Purpose: The aim of this study was to develop a dose calculation method which is applicable to the interseed attenuation and the geometry lacking the equilibrium radiation scatter conditions in brachytherapy.

Methods: The dose obtained from measurement with a radiophotoluminescent glass rod dosimeter (GRD) was compared to the dose calculated with the Monte Carlo (MC) code "EGS5," using the 125I source structure detailed in by Kennedy et al. The GRDs were irradiated with 125I Oncoseed 6711 in a human head phantom.

View Article and Find Full Text PDF

In the real-time tumor-tracking radiotherapy system, fluoroscopy is used to determine the real-time position of internal fiducial markers. The pattern recognition score (PRS) ranging from 0 to 100 is computed by a template pattern matching technique in order to determine the marker position on the fluoroscopic image. The PRS depends on the quality of the fluoroscopic image.

View Article and Find Full Text PDF

Purpose: To establish a method for the accurate acquisition and analysis of the variations in tumor volume, location, and three-dimensional (3D) shape of tumors during radiotherapy in the era of image-guided radiotherapy.

Methods And Materials: Finite element models of lymph nodes were developed based on computed tomography (CT) images taken before the start of treatment and every week during the treatment period. A surface geometry map with a volumetric scale was adopted and used for the analysis.

View Article and Find Full Text PDF

A feasibility study of a novel PET-based molecular image guided radiation therapy (m-IGRT) system was conducted by comparing PET-based digitally reconstructed planar image (PDRI) registration with radiographic registration. We selected a pair of opposing parallel-plane PET systems for the practical implementation of this system. Planar images along the in-plane and cross-plane directions were reconstructed from the parallel-plane PET data.

View Article and Find Full Text PDF

Objective: To investigate the outcome of linac-based fractionated stereotactic radiotherapy over the last 10 years for intracranial skull base benign meningiomas in patients who were inoperable, who had residual tumors with some components of high mitotic index after surgery and who experienced relapse of the tumor.

Methods: Twenty-seven patients with intracranial skull base benign meningiomas treated with fractionated stereotactic radiotherapy were retrospectively reviewed. Twenty-seven cases were diagnosed as benign meningiomas on pathological (17 cases) or radiological (10 cases) examination.

View Article and Find Full Text PDF

Purpose: To evaluate the linear quadratic (LQ) model for hypofractionated radiotherapy within the context of predicting radiation pneumonitis (RP) and to investigate the effect if a linear (L) model in the high region (LQL model) is used.

Methods And Materials: The radiation doses used for 128 patients treated with hypofractionated radiotherapy were converted to the equivalent doses given in fractions of 2 Gy for a range of alpha/beta ratios (1 Gy to infinity) according to the LQ(L) model. For the LQL model, different cut-off values between the LQ model and the linear component were used.

View Article and Find Full Text PDF

Purpose: To evaluate the effectiveness of the stereotactic body frame (SBF), with or without a diaphragm press or a breathing cycle monitoring device (Abches), in controlling the range of lung tumor motion, by tracking the real-time position of fiducial markers.

Methods And Materials: The trajectories of gold markers in the lung were tracked with the real-time tumor-tracking radiotherapy system. The SBF was used for patient immobilization and the diaphragm press and Abches were used to actively control breathing and for self-controlled respiration, respectively.

View Article and Find Full Text PDF

This study demonstrates the characterization of proton spot scanning on a Li target assembly for accelerator-based BNCT from the viewpoint of heat removal and material strength. These characteristics are investigated as to their dependence on the Li target thickness, considering that the Cu backing plate has more suitable heat removal properties than Li. Two situations are considered in this paper, i.

View Article and Find Full Text PDF

A dosimetry study of mice irradiation at the Kinki University nuclear reactor (UTR-KINKI) has been carried out. Neutron and gamma-ray doses at the irradiation port in the presence of 0, 1, 2, 4 and 6 mice were measured using the paired chamber method. The results show that neutron dose is reduced with increasing numbers of mice.

View Article and Find Full Text PDF

The usable range of thickness for the solid lithium target in the accelerator-based neutron production for BNCT via the near-threshold (7)Li(p,n)(7)Be reaction was investigated. While the feasibility of using a (7)Li-target with thickness equal to that which is required to slow down a mono-energetic 1.900 MeV incident proton to the 1.

View Article and Find Full Text PDF

An evaluation of mono-energetic proton energies ranging from 1.885 MeV to 1.920 MeV was carried out to determine the viability of these near threshold energies in producing neutrons for BNCT via the (7)Li(p,n)(7)Be reaction.

View Article and Find Full Text PDF

The characteristics of moderator assembly dimension are investigated for the usage of 7Li(p,n) neutrons by 2.5 MeV protons in boron newtron capture therapy (BNCT) of brain tumors in the present study. The indexes checked are treatable protocol depth (TPD), which is the greatest depth of the region satisfying the dose requirements in BNCT protocol, proton current necessary to complete BNCT by 1 h irradiation, and the heat flux deposited in the Li target which should be removed.

View Article and Find Full Text PDF

The dependence of boron-dose enhancer (BDE) characteristics on dose protocol and 10B concentration was evaluated for BNCT using near-threshold 7Li(p,n)7Be direct neutrons. The treatable protocol depth (TPD) was utilized as an evaluation index. MCNP calculations were performed for near-threshold 7Li(p,n)7Be at a proton energy of 1.

View Article and Find Full Text PDF

The dose contribution of (10)B(n,alpha)(7)Li reaction in BNCT using near threshold (7)Li(p,n)(7)Be direct neutrons can be increased through the use of materials referred to as boron-dose enhancers (BDE). In this paper, possible BDE optimization criteria were determined from the characteristics of candidate BDE materials namely (C(2)H(4))(n), (C(2)H(3)F)(n), (C(2)H(2)F(2))(n), (C(2)HF(3))(n), (C(2)D(4))(n), (C(2)F(4))(n), beryllium metal, graphite, D(2)O and (7)LiF. The treatable protocol depth (TPD) was used as the assessment index for evaluating the effect of these materials on the dose distribution in a medium undergoing BNCT using near threshold (7)Li(p,n)(7)Be direct neutrons.

View Article and Find Full Text PDF

The characteristics of a number of candidate boron-dose enhancer (BDE) materials for boron neutron capture therapy (BNCT) using near threshold 7Li(p,n)7Be direct neutrons were evaluated based on the treatable protocol depth (TPD), defined in this paper. Simulation calculations were carried out by means of MCNP-4B transport code for candidate BDE materials, namely, (C2H4)n, (C2H3F)n, (C2H2F2)n, (C2HF3)n, (C2D4)n, (C2F4)n, beryllium metal, graphite, D2O and 7LiF. Dose protocols applied were those used for intra-operative BNCT treatment for brain tumour currently used in Japan.

View Article and Find Full Text PDF