Wildlife roadkill is a recurring, dangerous problem that affects both humans and animals and has received increasing attention from environmentalists worldwide. Addressing this problem is difficult due to the high investments required in road infrastructure to effectively reduce wildlife vehicle collisions. Despite recent applications of machine learning techniques in low-cost and economically viable detection systems, e.
View Article and Find Full Text PDFThere is only a very short reaction time for people to find the best way out of a building in a fire outbreak. Software applications can be used to assist the rapid evacuation of people from the building; however, this is an arduous task, which requires an understanding of advanced technologies. Since well-known pathway algorithms (such as, Dijkstra, Bellman-Ford, and A*) can lead to serious performance problems, when it comes to multi-objective problems, we decided to make use of deep reinforcement learning techniques.
View Article and Find Full Text PDFFrustrations, monetary losses, lost time, high fuel consumption and CO 2 emissions are some of the problems caused by traffic jams in urban centers. In an attempt to solve this problem, this article proposes a traffic service to control congestion, named FOXS-Fast Offset Xpath Service. FOXS aims to reduce the problems generated by a traffic jam in a distributed way through roads classification and the suggestion of new routes to vehicles.
View Article and Find Full Text PDFThe rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until now feasible methods of dealing with this have included the use of wireless sensor networks (WSNs) for data collection and machine-learning (ML) techniques for forecasting natural disasters.
View Article and Find Full Text PDFIntelligent Transportation Systems (ITS) rely on Inter-Vehicle Communication (IVC) to streamline the operation of vehicles by managing vehicle traffic, assisting drivers with safety and sharing information, as well as providing appropriate services for passengers. Traffic congestion is an urban mobility problem, which causes stress to drivers and economic losses. In this context, this work proposes a solution for the detection, dissemination and control of congested roads based on inter-vehicle communication, called INCIDEnT.
View Article and Find Full Text PDFIn this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN).
View Article and Find Full Text PDF