Background: Mesenchymal stem cells (MSCs) serve as an attractive vehicle for cell-directed enzyme prodrug therapy (CDEPT) due to their unique tumour-nesting ability. Such approach holds high therapeutic potential for treating solid tumours including glioblastoma multiforme (GBM), a devastating disease with limited effective treatment options. Currently, it is a common practice in research and clinical manufacturing to use viruses to deliver therapeutic genes into MSCs.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) driven gene-directed enzyme prodrug therapy has emerged as a potential strategy for cancer treatment. The tumour-nesting properties of MSCs enable these vehicles to target tumours and metastases with effective therapies. A crucial step in engineering MSCs is the delivery of genetic material with low toxicity and high efficiency.
View Article and Find Full Text PDFCationic polymers remain attractive tools for non-viral gene transfer. The effectiveness of these vectors rely on the ability to deliver plasmid DNA (pDNA) into the nucleus of cells. While we have previously demonstrated the potential of Lignin-PGEA-PEGMA as a non-viral gene delivery vector, alterations of cellular phenotype and cytotoxicity were observed post transfection.
View Article and Find Full Text PDF