Publications by authors named "Geraldine San Jose"

Despite continued research efforts, the threat of drug resistance from a variety of bacteria continues to plague clinical communities. Discovery and validation of novel biochemical targets will facilitate development of new drugs to combat these organisms. The methylerythritol phosphate (MEP) pathway to make isoprene units is a biosynthetic pathway essential to many bacteria.

View Article and Find Full Text PDF

The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring the inhibition of the nonmevalonate pathway (NMP) in isoprene biosynthesis as a potential new avenue for developing antibiotics with unique mechanisms.
  • The most studied enzyme in this pathway is Dxr, and many effective inhibitors have been found that are chemically similar to natural products like fosmidomycin and FR900098.
  • A series of new compounds were synthesized with varying linker lengths, and the results indicated that compounds with propyl or propenyl linkers were most effective at inhibiting Mtb Dxr, with one compound showing a noteworthy improvement in killing Mtb.
View Article and Find Full Text PDF

In most bacteria, the nonmevalonate pathway is used to synthesize isoprene units. Dxr, the second step in the pathway, catalyzes the NADPH-dependent reductive isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol-4-phosphate (MEP). Dxr is inhibited by natural products fosmidomycin and FR900098, which bind in the DXP binding site.

View Article and Find Full Text PDF

Bacteria, plants, and algae produce isoprenoids through the methylerythritol phosphate (MEP) pathway, an attractive pathway for antimicrobial drug development as it is present in prokaryotes and some lower eukaryotes but absent from human cells. The first committed step of the MEP pathway is catalyzed by 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR/MEP synthase). MEP pathway genes have been identified in many biothreat agents, including Francisella, Brucella, Bacillus, Burkholderia, and Yersinia.

View Article and Find Full Text PDF

The nonmevalonate pathway (NMP) of isoprene biosynthesis is an exciting new route toward novel antibiotic development. Inhibitors against several enzymes in this pathway are currently under examination. A significant liability of many of these agents is poor cell penetration.

View Article and Find Full Text PDF