Functional changes in hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels have been shown to contribute to medial prefrontal (mPFC) hyperexcitability after peripheral nerve injury. A reduction in the open probability of these neuronal channels might be relevant since this can enhance membrane input resistance and synaptic summation. However, the molecular mechanisms underlying neuropathy-associated alterations in HCN channel activity remain elusive.
View Article and Find Full Text PDFA response to environmental stress is critical to alleviate cellular injury and maintain cellular homeostasis. Eukaryotic initiation factor 2 (eIF2) is a key integrator of cellular stress responses and an important regulator of mRNA translation. Diverse stress signals lead to the phosphorylation of the α subunit of eIF2 (Ser51), resulting in inhibition of global protein synthesis while promoting expression of proteins that mediate cell adaptation to stress.
View Article and Find Full Text PDFRecent studies have suggested that in humans and animals with significant skeletal pain, changes in the mechanical hypersensitivity of the skin can be detected. However, whether measuring changes in skin hypersensitivity can be a reliable surrogate for measuring skeletal pain itself remains unclear. To explore this question, we generated skeletal pain by injecting and confining GFP-transfected NCTC 2472 osteosarcoma cells unilaterally to the femur of C3H male mice.
View Article and Find Full Text PDFThe number of patients suffering from postoperative pain due to orthopedic surgery and bone fracture is projected to dramatically increase because the human life span, weight, and involvement in high-activity sports continue to rise worldwide. Joint replacement or bone fracture frequently results in skeletal pain that needs to be adequately controlled for the patient to fully participate in needed physical rehabilitation. Currently, the 2 major therapies used to control skeletal pain are nonsteroidal anti-inflammatory drugs and opiates, both of which have significant unwanted side effects.
View Article and Find Full Text PDFStudies in animals and humans show that blockade of nerve growth factor (NGF) attenuates both malignant and nonmalignant skeletal pain. While reduction of pain is important, a largely unanswered question is what other benefits NGF blockade might confer in patients with bone cancer. Using a mouse graft model of bone sarcoma, we demonstrate that early treatment with an NGF antibody reduced tumor-induced bone destruction, delayed time to bone fracture, and increased the use of the tumor-bearing limb.
View Article and Find Full Text PDFSkeletal injury is a leading cause of chronic pain and long-term disability worldwide. While most acute skeletal pain can be effectively managed with nonsteroidal anti-inflammatory drugs and opiates, chronic skeletal pain is more difficult to control using these same therapy regimens. One possibility as to why chronic skeletal pain is more difficult to manage over time is that there may be nerve sprouting in nonhealed areas of the skeleton that normally receive little (mineralized bone) to no (articular cartilage) innervation.
View Article and Find Full Text PDFWe report a novel model in which remote activation of peripheral nociceptive pathways in transgenic mice is achieved optogenetically, without any external noxious stimulus or injury. Taking advantage of a binary genetic approach, we selectively targeted Nav1.8(+) sensory neurons for conditional expression of channelrhodopsin-2 (ChR2) channels.
View Article and Find Full Text PDFBackground: We have previously shown a sprouting of sympathetic fibers into the upper dermis of the skin following subcutaneous injection of complete Freund's adjuvant (CFA) into the hindpaw. This sprouting correlated with an increase in pain-related sensitivity. We hypothesized that this sprouting and pain-related behavior were caused by an increase in nerve growth factor (NGF) levels.
View Article and Find Full Text PDFAlthough chronic pain is the most common symptom of arthritis, relatively little is known about the mechanisms driving it. Recently, a sprouting of autonomic sympathetic fibers into the upper dermis of the skin, an area that is normally devoid of them, was found in the skin following chronic inflammation of the rat hindpaw. While this sprouting only occurred when signs of joint and bone damage were present, it remained to be clarified whether it was a consequence of the chronic inflammation of the skin or of the arthritis and whether it also occurred in the joint.
View Article and Find Full Text PDFPain is a major symptom associated with chronic inflammation. In previous work from our laboratory, we have shown that in animal models of neuropathic pain there is a sprouting of sympathetic fibers into the upper dermis, a territory normally devoid of them. However, it is not known whether such sympathetic sprouting, which is likely trophic factor mediated, also occurs in chronic inflammation and arthritis.
View Article and Find Full Text PDF