Publications by authors named "Geraldine Hill Della Puppa"

Background: Phosphodiesterase 10A (PDE10A) is expressed at high levels in the striatum and has been proposed both as a biomarker for Huntington's disease pathology and as a target for intervention.

Objective: PDE10A radiotracers have been successfully used to measure changes in binding density in Huntington's disease patients, but little is known about PDE10A binding in mouse models that are used extensively to model pathology and test therapeutic interventions.

Methods: Our study investigated changes in PDE10A binding using the selective tracer 3H-7980 at specific ages of two Huntington's disease transgenic mouse models: R6/2, a short-lived model carrying exon-1 of mutant HTT and BACHD, a longer-lived model carrying full-length mutant HTT.

View Article and Find Full Text PDF

Phosphodiesterase 10A (PDE10A) inhibitors have therapeutic potential for the treatment of psychiatric and neurologic disorders, such as schizophrenia and Huntington's disease. One of the key requirements for successful central nervous system drug development is to demonstrate target coverage of therapeutic candidates in brain for lead optimization in the drug discovery phase and for assisting dose selection in clinical development. Therefore, we identified AMG 580 [1-(4-(3-(4-(1H-benzo[d]imidazole-2-carbonyl)phenoxy)pyrazin-2-yl)piperidin-1-yl)-2-fluoropropan-1-one], a novel, selective small-molecule antagonist with subnanomolar affinity for rat, primate, and human PDE10A.

View Article and Find Full Text PDF

We report the discovery of novel imidazo[4,5-b]pyridines as potent and selective inhibitors of PDE10A. The investigation began with our recently disclosed ketobenzimidazole 1, which exhibited single digit nanomolar PDE10A activity but poor oral bioavailability. To improve oral bioavailability, we turned to novel scaffold imidazo[4,5-b]pyridine 2, which not only retained nanomolar PDE10A activity but was also devoid of the morpholine metabolic liability.

View Article and Find Full Text PDF

Positron emission tomography (PET) imaging with the glucose analog 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F] FDG) has demonstrated clinical utility for the monitoring of brain glucose metabolism alteration in progressive neurodegenerative diseases. We examined dynamic [(18)F]FDG PET imaging and kinetic modeling of atlas-based regions to evaluate regional changes in the cerebral metabolic rate of glucose in the widely-used 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease. Following a bolus injection of 18.

View Article and Find Full Text PDF

A radiolabeled tracer for imaging therapeutic targets in the brain is a valuable tool for lead optimization in CNS drug discovery and for dose selection in clinical development. We report the rapid identification of a novel phosphodiesterase 10A (PDE10A) tracer candidate using a LC-MS/MS technology. This structurally distinct PDE10A tracer, AMG-7980 (5), has been shown to have good uptake in the striatum (1.

View Article and Find Full Text PDF