Publications by authors named "Geraldine Harriman"

TYK2 is a key mediator of IL12, IL23, and type I interferon signaling, and these cytokines have been implicated in the pathogenesis of multiple inflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, lupus, and inflammatory bowel diseases. Supported by compelling data from human genome-wide association studies and clinical results, TYK2 inhibition through small molecules is an attractive therapeutic strategy to treat these diseases. Herein, we report the discovery of a series of highly selective pseudokinase (Janus homology 2, JH2) domain inhibitors of TYK2 enzymatic activity.

View Article and Find Full Text PDF

TYK2 is a member of the JAK family of kinases and a key mediator of IL-12, IL-23, and type I interferon signaling. These cytokines have been implicated in the pathogenesis of multiple inflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, lupus, and inflammatory bowel diseases. Supported by compelling data from human genetic association studies, TYK2 inhibition is an attractive therapeutic strategy for these diseases.

View Article and Find Full Text PDF

The incidence of hepatocellular carcinoma (HCC) is rapidly increasing due to the prevalence of obesity and non-alcoholic fatty liver disease, but the molecular triggers that initiate disease development are not fully understood. We demonstrate that mice with targeted loss-of-function point mutations within the AMP-activated protein kinase (AMPK) phosphorylation sites on acetyl-CoA carboxylase 1 (ACC1 Ser79Ala) and ACC2 (ACC2 Ser212Ala) have increased liver de novo lipogenesis (DNL) and liver lesions. The same mutation in ACC1 also increases DNL and proliferation in human liver cancer cells.

View Article and Find Full Text PDF

Unlabelled: NDI-010976, an allosteric inhibitor of acetyl-coenzyme A carboxylases (ACC) ACC1 and ACC2, reduces hepatic de novo lipogenesis (DNL) and favorably affects steatosis, inflammation, and fibrosis in animal models of fatty liver disease. This study was a randomized, double-blind, placebo-controlled, crossover trial evaluating the pharmacodynamic effects of a single oral dose of NDI-010976 on hepatic DNL in overweight and/or obese but otherwise healthy adult male subjects. Subjects were randomized to receive either NDI-010976 (20, 50, or 200 mg) or matching placebo in period 1, followed by the alternate treatment in period 2; and hepatic lipogenesis was stimulated with oral fructose administration.

View Article and Find Full Text PDF

Modeling protein-ligand interactions has been a central goal of computational chemistry for many years. We here review recent progress toward this goal, and highlight the role free energy calculation methods and computational solvent analysis techniques are now having in drug discovery. We further describe recent use of these methodologies to advance two separate drug discovery programs targeting acetyl-CoA carboxylase and tyrosine kinase 2.

View Article and Find Full Text PDF

Continuous de novo fatty acid synthesis is a common feature of cancer that is required to meet the biosynthetic demands of a growing tumor. This process is controlled by the rate-limiting enzyme acetyl-CoA carboxylase (ACC), an attractive but traditionally intractable drug target. Here we provide genetic and pharmacological evidence that in preclinical models ACC is required to maintain the de novo fatty acid synthesis needed for growth and viability of non-small-cell lung cancer (NSCLC) cells.

View Article and Find Full Text PDF

Simultaneous inhibition of the acetyl-CoA carboxylase (ACC) isozymes ACC1 and ACC2 results in concomitant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation and may favorably affect the morbidity and mortality associated with obesity, diabetes, and fatty liver disease. Using structure-based drug design, we have identified a series of potent allosteric protein-protein interaction inhibitors, exemplified by ND-630, that interact within the ACC phosphopeptide acceptor and dimerization site to prevent dimerization and inhibit the enzymatic activity of both ACC isozymes, reduce fatty acid synthesis and stimulate fatty acid oxidation in cultured cells and in animals, and exhibit favorable drug-like properties. When administered chronically to rats with diet-induced obesity, ND-630 reduces hepatic steatosis, improves insulin sensitivity, reduces weight gain without affecting food intake, and favorably affects dyslipidemia.

View Article and Find Full Text PDF

A novel series of barbituric acid derivatives were identified as selective inhibitors of alpha4beta7 MAdCAM (mucosal addressin cell adhesion molecule-1) interactions via a high throughput screening exercise. These inhibitors were optimized to submicromolar potencies in whole cell adhesion assays, retaining their selectivity over alpha4beta1 VCAM.

View Article and Find Full Text PDF

The identification, optimization, and structure-activity relationship (SAR) of small-molecule CCR4 antagonists is described. An initial screening hit with micromolar potency was identified that was optimized to sub-micromolar binding potency by enantiomer resolution, halogenation of the naphthalene ring, and extension of the alkyl chain linker between the central piperidine ring and the terminal aryl group. An antagonist was identified that showed good cross-reactivity against the mouse receptor and inhibited CCR4-based cell recruitment in dose-dependent fashion.

View Article and Find Full Text PDF

The design, synthesis, and structure-activity relationship development of naphthalene-derived human CCR8 antagonists is described. In vitro binding assay results of these investigations are reported, critical interactions of the antagonists with CCR8 are defined, and preliminary physicochemical and pharmacokinetic data for the naphthalene scaffold are presented.

View Article and Find Full Text PDF

Objective: The NF-kappaB signaling pathway promotes the immune response in rheumatoid arthritis (RA) and in rodent models of RA. NF-kappaB activity is regulated by the IKK-2 kinase during inflammatory responses. To elucidate how IKK-2 inhibition suppresses disease development, we used a combination of in vivo imaging, transcription profiling, and histopathology technologies to study mice with antibody-induced arthritis.

View Article and Find Full Text PDF

Objective: The IKK complex regulates NF-kappaB activation, an important pathway implicated in the rheumatoid arthritis (RA) disease process. This study was undertaken to assess the efficacy of N-(6-chloro-7-methoxy-9H-beta-carbolin-8-yl)-2-methylnicotinamide (ML120B), a potent and selective small molecule inhibitor of IKKbeta.

Methods: Polyarthritis was induced in rats by injection of Freund's complete adjuvant into the hind footpad.

View Article and Find Full Text PDF

Activation of CCR8 by its ligand CCL1 may play an important role in diseases such as asthma, multiple sclerosis, and cancer. The study of small molecule CCR8 antagonists will help establish the validation of these hypotheses. We report the design, synthesis, and progress toward optimization of potent small molecule CCR8 antagonists identified from a high-throughput screen.

View Article and Find Full Text PDF

IkappaB kinase (IKK) beta is essential for inflammatory cytokine-induced activation of nuclear factor kappaB (NF-kappaB). NF-kappaB plays a pivotal role in the function of major cell types that contribute to the pathophysiological process of rheumatoid arthritis (RA). Here, we report the mechanism and the effect of the IKKbeta inhibitor N-(6-chloro-7-methoxy-9H-beta-carbolin-8-yl)-2-methylnicotinamide (ML120B), a beta-carboline derivative, on NF-kappaB signaling and gene activation in RA-relevant cell systems.

View Article and Find Full Text PDF

[reaction: see text] Reaction of o-azidobenzenesulfonamides with polymer-supported triphenylphosphine affords the corresponding iminophosphoranes. Subsequent reaction with isocyanates gives 3-amino-1,2,4-benzothiadiazine 1,1-dioxides in high yields and purities. The reaction has been successfully applied to the synthesis of derivatives with various substituents at the 2- and 3-positions and in the benzenoid ring.

View Article and Find Full Text PDF

The asymmetric syntheses of heteroaromatic 3-[(tert-butyldimethylsilyl)oxy]-2-azetidinones 12-16 via chiral ester enolate-imine cyclocondensation chemistry are described. The azetidinones contain heteroaromatic moieties which, in certain cases, contribute to a decrease in enantioselectivity due to possible alternate coordinations in the transition states. The (3R,4S)-3-[(tert-butyldimethylsilyl)oxy]-4-heteroaryl-2-azetidinones were subsequently converted to the heteroaromatic taxanes 31-36 and 43-45.

View Article and Find Full Text PDF