Publications by authors named "Geraldine Duc"

Article Synopsis
  • AGuIX nanoparticles are gadolinium-based agents that serve as both MRI contrast agents and enhance the effectiveness of X-ray radiation therapy for cancer treatment.
  • A phase I trial tested the safety and optimal dosage of AGuIX in combination with conventional therapies for 12 patients with advanced cervical cancer, showing good tolerability and no severe side effects.
  • The treatment resulted in complete remission of the primary tumors in all but one patient, highlighting the potential of these nanoparticles to improve the precision of tumor targeting and enhance radiotherapy outcomes.
View Article and Find Full Text PDF

AGuIX, a novel gadolinium-based nanoparticle, has been deployed in a pioneering double-blinded Phase II clinical trial aiming to assess its efficacy in enhancing radiotherapy for tumor treatment. This paper moves towards this goal by analyzing AGuIX uptake patterns in 23 patients. A phantom was designed to establish the relationship between AGuIX concentration and longitudinal ( ) relaxation.

View Article and Find Full Text PDF

Background: Despite standard treatments including chemoradiotherapy with temozolomide (TMZ) (STUPP protocol), the prognosis of glioblastoma patients remains poor. AGuIX nanoparticles have a high radiosensitizing potential, a selective and long-lasting accumulation in tumors and a rapid renal elimination. Their therapeutic effect has been proven in vivo on several tumor models, including glioblastoma with a potential synergetic effect when combined with TMZ based chemoradiotherapy, and they are currently evaluated in 4 ongoing Phase Ib and II clinical trials in 4 indications (brain metastases, lung, pancreatic and cervix cancers) (> 100 patients received AGuIX).

View Article and Find Full Text PDF

Background: The measurement of the concentration of theranostic agents in vivo is essential for the assessment of their therapeutic efficacy and their safety regarding healthy tissue. To this end, there is a need for quantitative T measurements that can be obtained as part of a standard clinical imaging protocol applied to tumor patients.

Purpose: To generate T maps from MR images obtained with the magnetization-prepared rapid gradient echo (MPRAGE) sequence.

View Article and Find Full Text PDF

The microbeam radiation therapy (MRT), a spatially micro-fractionated synchrotron radiotherapy, leads to better control of incurable high-grade glioma than that obtained upon homogeneous radiotherapy. We evaluated the effect of meloxicam, a non-steroidal anti-inflammatory drug (NSAID), to increase the MRT response. Survival of rats bearing intracranial 9L gliosarcoma treated with meloxicam and/or MRT (400 Gy, 50 µm-wide microbeams, 200 µm spacing) was monitored.

View Article and Find Full Text PDF

Conventional radiotherapy is a widely used non-invasive form of treatment for many types of cancer. However, due to a low threshold in the lung for radiation-induced normal tissue damage, it is of less utility in treating lung cancer. For this reason, surgery is the preferred treatment for lung cancer, which has the detriment of being highly invasive.

View Article and Find Full Text PDF

Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue.

View Article and Find Full Text PDF

Background And Purpose: Brain metastasis impacts greatly on patients' quality of life and survival. The phase I NANO-RAD trial assessed the safety and maximum tolerated dose of systemic administration of a novel gadolinium-based nanoparticle, AGuIX, in combination with whole brain radiotherapy in patients with multiple brain metastases not suitable for stereotactic radiotherapy.

Materials And Methods: Patients with measurable brain metastases received escalating doses of AGuIX nanoparticles (15, 30, 50, 75, or 100 mg/kg intravenously) on the day of initiation of WBRT (30 Gy in 10 fractions) in 5 cohorts of 3 patients each.

View Article and Find Full Text PDF

The use of radiosensitizing nanoparticles with both imaging and therapeutic properties on the same nano-object is regarded as a major and promising approach to improve the effectiveness of radiotherapy. Here, we report the MRI findings of a phase 1 clinical trial with a single intravenous administration of Gd-based AGuIX nanoparticles, conducted in 15 patients with four types of brain metastases (melanoma, lung, colon, and breast). The nanoparticles were found to accumulate and to increase image contrast in all types of brain metastases with MRI enhancements equivalent to that of a clinically used contrast agent.

View Article and Find Full Text PDF

We formulated an ultra-small, gadolinium-based nanoparticle (AGuIX) with theranostic properties to simultaneously enhance MRI tumor delineation and radiosensitization in a glioma model. The 9L glioma cells were orthotopically implanted in 10-week-old Fischer rats. The intra-tumoral accumulation of AGuIX was quantified using MRI T1-maps.

View Article and Find Full Text PDF

Introduction: Occurrence of multiple brain metastases is a critical evolution of many cancers with significant neurological and overall survival consequences, despite new targeted therapy and standard whole brain radiotherapy (WBRT). A gadolinium-based nanoparticle, AGuIX, has recently demonstrated its effectiveness as theranostic and radiosensitiser agent in preclinical studies. The favourable toxicity profile in animals and its administration as a simple intravenous injection has motivated its use in patients with this first in human study.

View Article and Find Full Text PDF

Background: It is a challenge in low-resource settings to ensure the availability of complete, timely disease surveillance information. Smartphone applications (apps) have the potential to enhance surveillance data transmission.

Methods: The Central African Republic (CAR) Ministry of Health and Médecins Sans Frontières (MSF) conducted a 15-week pilot project to test a disease surveillance app, Argus, for 20 conditions in 21 health centers in Mambéré Kadéi district (MK 2016).

View Article and Find Full Text PDF

AGuIX are sub-5 nm nanoparticles made of a polysiloxane matrix and gadolinium chelates. This nanoparticle has been recently accepted in clinical trials in association with radiotherapy. This review will summarize the principal preclinical results that have led to first in man administration.

View Article and Find Full Text PDF

Objective: To rapidly increase childhood immunization through a preventive, multi-antigen, vaccination campaign in Mambéré-Kadéï prefecture, Central African Republic, where a conflict from 2012 to 2015 reduced vaccination coverage.

Methods: The three-round campaign took place between December 2015 and June 2016 using: (i) oral poliomyelitis vaccine (OPV); (ii) combined diphtheria, tetanus and pertussis (DTP) vaccine, type B (Hib) and hepatitis B (DTP-Hib-hepatitis B) vaccine; (iii) pneumococcal conjugate vaccine (PCV); (iv) measles vaccine; and (v) yellow fever vaccine. Administrative data were collected on vaccines administered by age group and vaccination coverage surveys were carried out before and after the campaign.

View Article and Find Full Text PDF

Purpose: Experimental neuroimaging provides a wide range of methods for the visualization of brain anatomic morphology down to subcellular detail. Still, each technique-specific detection mechanism presents compromises among the achievable field-of-view size, spatial resolution, and nervous tissue sensitivity, leading to partial sample coverage, unresolved morphologic structures, or sparse labeling of neuronal populations and often also to obligatory sample dissection or other sample invasive manipulations. X-ray phase-contrast imaging computed tomography (PCI-CT) is an experimental imaging method that simultaneously provides micrometric spatial resolution, high soft-tissue sensitivity, and ex vivo full organ rodent brain coverage without any need for sample dissection, staining or labeling, or contrast agent injection.

View Article and Find Full Text PDF

Synchrotron-generated microplanar beams (microbeams) provide the most stereo-selective irradiation modality known today. This novel irradiation modality has been shown to control seizures originating from eloquent cortex causing no neurological deficit in experimental animals. To test the hypothesis that application of microbeams in the hippocampus, the most common source of refractory seizures, is safe and does not induce severe side effects, we used microbeams to induce transections to the hippocampus of healthy rats.

View Article and Find Full Text PDF

Microbeam radiation therapy is a novel preclinical technique, which uses synchrotron-generated X-rays for the treatment of brain tumours and drug-resistant epilepsies. In order to safely translate this approach to humans, a more in-depth knowledge of the long-term radiobiology of microbeams in healthy tissues is required. We report here the result of the characterization of the rat sensorimotor cortex tolerance to microradiosurgical parallel transections.

View Article and Find Full Text PDF

Aim: This study reports the use of gadolinium-based AGuIX nanoparticles (NPs) as a theranostic tool for both image-guided radiation therapy and radiosensitization of brain tumors.

Materials & Methods: Pharmacokinetics and regulatory toxicology investigations were performed on rodents. The AGuIX NPs' tumor accumulation was studied by MRI before 6-MV irradiation.

View Article and Find Full Text PDF

We recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.

View Article and Find Full Text PDF

Purpose: Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood.

View Article and Find Full Text PDF

A fast positioning method for brain tumor microbeam irradiations for preclinical studies at third-generation X-ray sources is described. The three-dimensional alignment of the animals relative to the X-ray beam was based on the X-ray tomography multi-slices after iodine infusion. This method used pink-beam imaging produced by the ID17 wiggler.

View Article and Find Full Text PDF

The major limitation to reaching a curative radiation dose in radioresistant tumors such as malignant gliomas is the high sensitivity to radiation and subsequent damage of the surrounding normal tissues. Novel dose delivery methods such as minibeam radiation therapy (MBRT) may help to overcome this limitation. MBRT utilizes a combination of spatial fractionation of the dose and submillimetric (600 μm) field sizes with an array ("comb") of parallel thin beams ("teeth").

View Article and Find Full Text PDF

The aim of this study was to determine the ability of multiparametric MRI to identify the early effects of individual treatment, during combined chemo-radiotherapy on brain tumours. Eighty male rats bearing 9L gliosarcomas were randomized into four groups: untreated, anti-angiogenic therapy (SORA group), microbeam radiation therapy (MRT group) and both treatments (MRT+SORA group). Multiparametric MRI (tumour volume, diffusion-weighted MR imaging (ADC), blood volume fraction (BVf), microvessel index (VSI), vessel wall integrity (AUC(P846)) and tissue oxygen saturation (StO2)) was performed 1 day before and 2, 5 and 8 days after treatment initiation.

View Article and Find Full Text PDF

Purpose: Microplanar X-ray beams (microbeams) originated by synchrotron sources have been delivered to the visual brain cortex regions in rodents to create microscopically narrow lesions. The effects of microbeams mimic those generated by microsurgical subpial transections (also known as multiple subpial transections) but are obtained in a low-invasive way.

Methods: Image-guided atlas-based microbeam cortical transections have been generated on seven 1 month-old Wistar rats.

View Article and Find Full Text PDF

Synchrotron microbeam radiation therapy (MRT) relies on the spatial fractionation of a synchrotron beam into parallel micron-wide beams allowing deposition of hectogray doses. MRT controls the intracranial tumor growth in rodent models while sparing normal brain tissues. Our aim was to identify the early biological processes underlying the differential effect of MRT on tumor and normal brain tissues.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Geraldine Duc"

  • - Geraldine Duc's recent research focuses primarily on the development and clinical application of gadolinium-based nanoparticles (AGuIX) as theranostic agents that enhance radiotherapy's effectiveness, particularly for brain metastases and glioblastoma patients.
  • - Her studies outline the safety and efficacy of AGuIX nanoparticles in various clinical trials, demonstrating their potential to improve imaging contrast in tumors and radiosensitization, leading to better outcomes in treatments like chemoradiotherapy.
  • - The innovative use of advanced imaging techniques, such as MRI and X-ray phase-contrast tomography, aims to better understand nanoparticle distribution and optimize therapeutic strategies, informing future research and applications in cancer treatment.