Publications by authors named "Geraldine Chanteux"

Micro-supercapacitors emerge as an important electrical energy storage technology expected to play a critical role in the large-scale deployment of autonomous microdevices for health, sensing, monitoring, and other IoT applications. Electrochemical double-layer capacitive storage requires a combination of high surface area and high electronic conductivity, with these being attained only in porous or nanostructured carbons, and recently found also in conducting metal-organic frameworks (MOFs). However, techniques for conformal deposition at micro- and nanoscale of these materials are complex, costly, and hard to upscale.

View Article and Find Full Text PDF

The formation of robust supramolecular frameworks built from hetero-polytopic metal complexes and interacting with different ancillary ions remains a long-standing and underexplored desire. Herein, the secondary sphere interaction chemistry of [Ru(5-oxido-6-hydroxy-1,10-phenanthroline)(5,6-dihydroxy-1,10-phenanthroline)] (1) ( = 1, 3) coordination ion is reported, where the π-conjugated phenanthroline ligands are functionalized with catecholate groups used as H-bond donors and ligands. The deprotonation of the catechols is found to control the overall charge stoichiometry in 1, acting as a metallotecton to interact with anions of different basicity (Cl in 1.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are hybrid materials known for their nanoscale pores, which give them high surface areas but generally lead to poor electrical conductivity. Recently, MOFs with high electrical conductivity were established as promising materials for a variety of applications in energy storage and catalysis. Many recent reports investigating the fundamentals of charge transport in these materials focus on the role of the organic ligands.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have emerged as an important, yet highly challenging class of electrochemical energy storage materials. The chemical principles for electroactive MOFs remain, however, poorly explored because precise chemical and structural control is mandatory. For instance, no anionic MOF with a lithium cation reservoir and reversible redox (like a conventional Li-ion cathode) has been synthesized to date.

View Article and Find Full Text PDF