Publications by authors named "Gerald W Lucassen"

Background: During several anesthesiological procedures, needles are inserted through the skin of a patient to target nerves. In most cases, the needle traverses several tissues-skin, subcutaneous adipose tissue, muscles, nerves, and blood vessels-to reach the target nerve. A clear identification of the target nerve can improve the success of the nerve block and reduce the rate of complications.

View Article and Find Full Text PDF

Safe vascular access is a prerequisite for intravenous drug admission. Discrimination between intra- and extravascular needle position is essential for procedure safety. Spectral tissue sensing (STS), based on optical spectroscopy, can provide tissue information directly from the needle tip.

View Article and Find Full Text PDF

Spectral tissue sensing (STS) exploits the scattering and absorption of light by tissue. The main objective of the present study was to determine whether STS can discriminate between correct and incorrect placement of the needle tip during lumbar transforaminal epidural injection. This was a single-blind prospective observational study in 30 patients with lumbar radicular pain scheduled for lumbar transforaminal epidural injection.

View Article and Find Full Text PDF

Background: Regional anesthesia has several advantages over general anesthesia but requires accurate needle placement to be effective. To achieve accurate placement, a needle equipped with optical fibers that allows tissue discrimination at the needle tip based on optical spectroscopy is proposed. This study investigates the sensitivity and specificity with which this optical needle can discriminate nerves from the surrounding tissues making use of different classification methods.

View Article and Find Full Text PDF

Purpose: This study presents the first in vivo real-time tissue characterization during image-guided percutaneous lung biopsies using diffuse reflectance spectroscopy (DRS) sensing at the tip of a biopsy needle with integrated optical fibers.

Experimental Design: Tissues from 21 consented patients undergoing lung cancer surgery were measured intraoperatively using the fiber-optic platform capable of assessing various physical tissue properties highly correlated to tissue architecture and composition. In addition, the method was tested for clinical use by performing DRS tissue sensing during 11 routine biopsy procedures in patients with suspected lung cancer.

View Article and Find Full Text PDF

Introduction: A significant number of transthoracic diagnostic biopsy procedures for lung lesions show indeterminate results. Such failures are potentially due to inadequate recognition of vital tumor tissue. The objective of this study was to evaluate whether optical spectroscopy at the tip of a biopsy needle device can improve the accuracy of transthoracic lung biopsies.

View Article and Find Full Text PDF

Diffuse reflectance spectroscopy (DRS) is a promising new technique for breast cancer diagnosis. However, inter-patient variation due to breast tissue heterogeneity may interfere with the accuracy of this technique. To tackle this issue, we aim to determine the diagnostic accuracy of DRS in individual patients.

View Article and Find Full Text PDF

Background: A significant number of percutaneous intrathoracic biopsy procedures result in indeterminate cytologic or histologic diagnosis in clinical practice. Diffuse reflectance spectroscopy (DRS) is an optical technique that can distinguish different tissue types on a microscopic level. DRS may improve needle localization accuracy during biopsy procedures.

View Article and Find Full Text PDF

Background And Objectives: A critical challenge encountered in interventional pain medicine procedures is to accurately and efficiently identify transitions to peripheral nerve targets. Current methods, which include ultrasound guidance and nerve stimulation, are not perfect. In this pilot study, we investigated the feasibility of identifying tissue transitions encountered during insertions toward peripheral nerve targets using optical spectroscopy.

View Article and Find Full Text PDF

Background And Objectives: Complications resulting from vascular penetration during nerve blocks are rare but potentially devastating events that can occur despite meticulous technique. In this in vivo human pilot study, we investigated the potential for detecting vascular penetration with optical reflectance spectroscopy during blocks of the sympathetic chain and the communicating ramus at lumbar levels.

Methods: A custom-designed needle stylet with integrated optical fibers was used in combination with a commercial needle shaft.

View Article and Find Full Text PDF

We report on the use of diffuse optical spectroscopy analysis of breast spectra acquired in the wavelength range from 500 to 1600 nm with a fiber optic probe. A total of 102 ex vivo samples of five different breast tissue types, namely adipose, glandular, fibroadenoma, invasive carcinoma, and ductal carcinoma in situ from 52 patients were measured. A model deriving from the diffusion theory was applied to the measured spectra in order to extract clinically relevant parameters such as blood, water, lipid, and collagen volume fractions, β-carotene concentration, average vessels radius, reduced scattering amplitude, Mie slope, and Mie-to-total scattering fraction.

View Article and Find Full Text PDF

We investigated differences between healthy tissue and metastatic tumor from ex vivo human partial liver resections using diffuse optical spectroscopy with a fiber optic probe. We extracted various physiological and morphological parameters from the spectra. During evaluation of the residual between the measurements and a fit model based on diffusion theory, we found that bile is an additional chromophore absorbing in the visible wavelength range that was missing in our model.

View Article and Find Full Text PDF

We present a novel, hand-held microscope probe for acquiring confocal images of biological tissue. This probe generates images by scanning a fiber-lens combination with a miniature electromagnetic actuator, which allows it to be operated in resonant and nonresonant scanning modes. In the resonant scanning mode, a circular field of view with a diameter of 190 μm and an angular frequency of 127 Hz can be achieved.

View Article and Find Full Text PDF

Skin structure and age-related changes in human skin were characterized in vivo by applying confocal laser scanning microscopy (CLSM) and optical coherence tomography (OCT). The overall effect of aging skin, derived from studies of volunteers belonging to two age groups, was found to be a significant decrease in the maximum thickness of the epidermis and flattening of the dermo-epidermal junction. At a certain depth in the dermis, well below the basal layer, a reflecting layer of fibrous structure is observed in CLSM images.

View Article and Find Full Text PDF

Topical application of corticosteroids induces blanching of the skin, based on changes of the underlying microcirculation of the skin. Usually the intensity of blanching after topical application of corticosteroids is measured subjectively by a trained observer using a visual score. In order to obtain an objective determination of the blanching effect and to assess the underlying effect of the skin perfusion, it is necessary to use noninvasive bioengineering techniques.

View Article and Find Full Text PDF