Mol Cell Proteomics
November 2024
O-GlcNAcylation was identified in the 1980s by Torres and Hart and modifies thousands of cellular proteins, yet the regulatory role of O-GlcNAc is still poorly understood compared to the abundance of mechanistic information known for other cycling post-translational modifications like phosphorylation. Many challenges are associated with studying O-GlcNAcylation and are tied to the technical hurdles with analysis by mass spectrometry. Over the years, many research groups have developed important methods to study O-GlcNAcylation revealing its role in the cell, and this perspective aims to review the challenges and innovations around O-GlcNAc research and chronicle the work by Donald F.
View Article and Find Full Text PDFProtein O-GlcNAc modification, similar to phosphorylation, supports cell survival by regulating key processes like transcription, cell division, trafficking, signaling, and stress tolerance. However, its role in protein homeostasis, particularly in protein synthesis, folding, and degradation, remains poorly understood. Our previous research shows that O-GlcNAc cycling enzymes associate with the translation machinery during protein synthesis and modify ribosomal proteins.
View Article and Find Full Text PDFAutonomic parasympathetic neurons (parasymNs) control unconscious body responses, including "rest-and-digest." ParasymN innervation is important for organ development, and parasymN dysfunction is a hallmark of autonomic neuropathy. However, parasymN function and dysfunction in humans are vastly understudied due to the lack of a model system.
View Article and Find Full Text PDFThe primary cilium plays critical roles in the homeostasis and development of neurons. Recent studies demonstrate that cilium length is regulated by the metabolic state of cells, as dictated by processes such as glucose flux and O-GlcNAcylation (OGN). The study of cilium length regulation during neuron development, however, has been an area left largely unexplored.
View Article and Find Full Text PDFO-GlcNAcylation is a post-translational modification (PTM) that regulates a wide range of cellular functions and has been associated with multiple metabolic diseases in various organs. The sympathetic nervous system (SNS) is the efferent portion of the autonomic nervous system that regulates metabolism of almost all organs in the body. How much the development and functionality of the SNS are influenced by O-GlcNAcylation, as well as how such regulation could contribute to sympathetic neuron (symN)-related neuropathy in diseased states, remains unknown.
View Article and Find Full Text PDFIntroduction: Sporadic Alzheimer's disease (sAD) is the leading type of dementia. Brain glucose hypometabolism, along with decreased O-GlcNAcylation levels, occurs before the onset of symptoms and correlates with pathogenesis. Heretofore, the mechanisms involved and the roles of O-GlcNAcylation in sAD pathology largely remain unknown due to a lack of human models of sAD.
View Article and Find Full Text PDFO-GlcNAc is a dynamic post-translational modification (PTM) that regulates protein functions. In studying the regulatory roles of O-GlcNAc, a major roadblock is the inability to change O-GlcNAcylation on a single protein at a time. Herein, we developed a dual RNA-aptamer-based approach that simultaneously targeted O-GlcNAc transferase (OGT) and β-catenin, the key transcription factor of the Wnt signaling pathway, to selectively increase O-GlcNAcylation of the latter without affecting other OGT substrates.
View Article and Find Full Text PDFFamilial dysautonomia (FD), a rare neurodevelopmental and neurodegenerative disorder affects the sympathetic and sensory nervous system. Although almost all patients harbor a mutation in ELP1, it remains unresolved exactly how function of sympathetic neurons (symNs) is affected; knowledge critical for understanding debilitating disease hallmarks, including cardiovascular instability or dysautonomic crises, that result from dysregulated sympathetic activity. Here, we employ the human pluripotent stem cell (hPSC) system to understand symN disease mechanisms and test candidate drugs.
View Article and Find Full Text PDFAlzheimer's disease is a neurodegenerative disease that affected over 6.5 million people in the United States in 2021, with this number expected to double in the next 40 years without any sort of treatment. Due to its heterogeneity and complexity, the etiology of Alzheimer's disease, especially sporadic Alzheimer's disease, remains largely unclear.
View Article and Find Full Text PDFThe addition of N-acetyl glucosamine (GlcNAc) on the hydroxy group of serine/threonine residues is known as -GlcNAcylation (OGN). The dynamic cycling of this monosaccharide on and off substrates occurs -linked β-N-acetylglucosamine transferase (OGT) and -linked β-N-acetylglucosaminase (OGA) respectively. These enzymes are found ubiquitously in eukaryotes and genetic knock outs of the gene has been found to be lethal in embryonic mice.
View Article and Find Full Text PDFO-GlcNAc is a common post-translational modification of nuclear, mitochondrial, and cytoplasmic proteins that regulates normal physiology and the cell stress response. Dysregulation of O-GlcNAc cycling is implicated in the etiology of type II diabetes, heart failure, hypertension, and Alzheimer's disease, as well as cardioprotection. These protocols cover simple and comprehensive techniques for detecting proteins modified by O-GlcNAc and studying the enzymes that add or remove O-GlcNAc.
View Article and Find Full Text PDFBiochem Soc Trans
April 2021
O-linked-β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification (PTM) that is actively added to and removed from thousands of intracellular proteins. As a PTM, O-GlcNAcylation tunes the functions of a protein in various ways, such as enzymatic activity, transcriptional activity, subcellular localization, intermolecular interactions, and degradation. Its regulatory roles often interplay with the phosphorylation of the same protein.
View Article and Find Full Text PDFBackground: Heart failure is a leading cause of death worldwide and is associated with the rising prevalence of obesity, hypertension, and diabetes. -GlcNAcylation (the attachment of -linked β-N-acetylglucosamine [-GlcNAc] moieties to cytoplasmic, nuclear, and mitochondrial proteins) is a posttranslational modification of intracellular proteins and serves as a metabolic rheostat for cellular stress. Total levels of -GlcNAcylation are determined by nutrient and metabolic flux, in addition to the net activity of 2 enzymes: -GlcNAc transferase (OGT) and -GlcNAcase (OGA).
View Article and Find Full Text PDFThis scientific commentary refers to ‘-GlcNAcylation regulates dopamine neuron function, survival and degeneration in Parkinson disease’, by Lee et al. (doi:10.1093/brain/awaa320).
View Article and Find Full Text PDFProtein O-linked β--acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) is a unique monosaccharide modification discovered in the early 1980s. With the technological advances in the past several decades, great progress has been made to reveal the biochemistry of O-GlcNAcylation, the substrates of O-GlcNAcylation, and the functional importance of protein O-GlcNAcylation. As a nutrient sensor, protein O-GlcNAcylation plays important roles in almost all biochemical processes examined.
View Article and Find Full Text PDFDiabetes mellitus (DM) and atrial fibrillation (AF) are major unsolved public health problems, and diabetes is an independent risk factor for AF. However, the mechanism(s) underlying this clinical association is unknown. ROS and protein O-GlcNAcylation (OGN) are increased in diabetic hearts, and calmodulin kinase II (CaMKII) is a proarrhythmic signal that may be activated by ROS (oxidized CaMKII, ox-CaMKII) and OGN (OGN-CaMKII).
View Article and Find Full Text PDFO-linked β-D-N-acetylglucosamine (O-GlcNAc) is an abundant post-translational modification (PTM) that modifies the serine or threonine residues of thousands of proteins in the nucleus, cytoplasm and mitochondria. Being a major "nutrient sensor" in cells, the O-GlcNAc pathway is sensitive to cellular metabolic states. Extensive crosstalk is observed between O-GlcNAcylation and protein phosphorylation.
View Article and Find Full Text PDF