Cell-mediated immunity plays a key role in the regression of papillomavirus-induced warts and intra-epithelial lesions but the target antigens that induce this response are not clear. Canine oral papillomavirus (COPV) infection of the oral cavity in dogs is a well-characterized model of mucosal papillomavirus infection that permits analysis of the immune events during the infectious cycle. In this study we show that during the COPV infectious cycle, systemic T cell responses to peptides of several early proteins particularly the E2 protein, as assayed by delayed type hypersensitivity, lymphoproliferation and IFN-gamma ELISPOT, can be detected.
View Article and Find Full Text PDFFollowing challenge with COPV (canine oral papillomavirus), DNA plasmids encoding COPV L1, E1 or E2 protein were delivered into oral mucosal and cutaneous sites in beagles using particle-mediated immunotherapeutic delivery (PMID). Two weeks post-challenge, a priming dose of 8 microg DNA was delivered followed by a booster dose after a further two weeks. A group of control dogs were vaccinated using plasmid DNA encoding Hepatitis B virus surface (HBVs) gene.
View Article and Find Full Text PDFDNA plasmids encoding the open reading frames of canine oral papillomavirus (COPV) nonstructural early genes E1, E2, or E7 protein were delivered into both oral mucosal and cutaneous epithelial sites in beagle dogs using particle-mediated immunotherapeutic delivery (PMID) technology. Control dogs were vaccinated with plasmid encoding either hepatitis B virus surface antigen (HBVs) or COPV L1. Using a prophylactic immunisation protocol, a priming dose of plasmid DNA was followed by a booster dose 6 weeks later.
View Article and Find Full Text PDF