Publications by authors named "Gerald Udolph"

Notch is a membrane bound transcription factor and it plays fundamental roles in many cell-cell interaction events usually involving directly neighboring cells relating an extrinsic signal of a sending cell to the nucleus of the receiving cell to modulate gene expression patterns in this cell. Notch regulates cell fate specification, cell proliferation as well as cell death in the contexts of many organs and cell types. Although the mechanisms of signal transduction from the cell surface to the nucleus are relatively simple, it is not fully understood how such a straightforward pathway can result in tremendously complex outcomes at the cellular level.

View Article and Find Full Text PDF

During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1.

View Article and Find Full Text PDF

In Drosophila, dopaminergic (DA) neurons can be found from mid embryonic stages of development till adulthood. Despite their functional involvement in learning and memory, not much is known about the developmental as well as molecular mechanisms involved in the events of DA neuronal specification, differentiation and maturation. In this report we demonstrate that most larval DA neurons are generated during embryonic development.

View Article and Find Full Text PDF

Background: The dopaminergic (DA) neurons present in the central brain of the Drosophila larva are spatially arranged in stereotyped groups that define clusters of bilaterally symmetrical neurons. These clusters have been classified according to anatomical criteria (position of the cell bodies within the cortex and/or projection pattern of the axonal tracts). However, information pertaining to the developmental biology, such as lineage relationship of clustered DA neurons and differential cell subtype-specific molecular markers and mechanisms of differentiation and/or survival, is currently not available.

View Article and Find Full Text PDF

The transfer of fetal cells into mothers during pregnancy and their organ specific integration is a well recognized phenomenon in placental vertebrates. Recently, it has been reported that some fetal cells found in the mothers have progenitor cell-like features such as multilineage differentiation potential and as a consequence they were termed pregnancy associated progenitor cells (PAPC). The multilineage differentiation potential suggested some level of cellular plasticity, which these cells share with other stem or progenitor cells.

View Article and Find Full Text PDF

Bidirectional cell trafficking between fetus and mother during pregnancy is a well-established phenomenon observed in placental vertebrates including humans. Although studies have shown that transmigratory fetal cells, also termed pregnancy-associated progenitor cells (PAPCs), can integrate into multiple maternal organs, the integration, long-term survival, and differentiation of PAPCs in the brain has not been extensively studied. Using a murine model of fetomaternal microchimerism, we show that PAPCs integrated and persisted in several areas of the maternal brain for up to 7 months postpartum.

View Article and Find Full Text PDF

The homeobox gene sine oculis (so) is required for the development of the entire visual system in Drosophila, which includes the compound eyes, the ocelli, the optic lobe of the brain and the Bolwig's organ. During ocelli development, so expression labels, together with eyes absent (eya), the emergence of the ocellar precursor cells in the third instar eye-antennal disc. Footprinting and misexpression studies have led to the proposal that the Pax6 homologue twin of eyeless (toy) directly regulates the initiation of so expression in ocellar precursor cells.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have multilineage differentiation potential which includes cell lineages of the central nervous system; hence MSCs might be useful in the treatment of neurodegenerative diseases such as Parkinson's disease. Although mesenchymal stem cells have been shown to differentiate into the neural lineage, there is still little knowledge about the underlying mechanisms of differentiation particularly towards specialized neurons such as dopaminergic neurons. Here, we show that MSCs derived from human umbilical cord blood (MSC(hUCBs)) are capable of expressing tyrosine hydroxylase (TH) and Nurr1, markers typically associated with DA neurons.

View Article and Find Full Text PDF

The generation of cellular diversity in the nervous system involves the mechanism of asymmetric cell division. Besides an array of molecules, including the Par protein cassette, a heterotrimeric G protein signalling complex, Inscuteable plays a major role in controlling asymmetric cell division, which ultimately leads to differential activation of the Notch signalling pathway and correct specification of the two daughter cells. In this context, Notch is required to be active in one sibling and inactive in the other.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression at the posttranscriptional level. Research on miRNAs has highlighted their importance in neural development, but the specific functions of neurally enriched miRNAs remain poorly understood. We report here the expression profile of miRNAs during neuronal differentiation in the human neuroblastoma cell line SH-SY5Y.

View Article and Find Full Text PDF

Inscuteable is the founding member of a protein complex localised to the apical cortex of Drosophila neural progenitors that controls their asymmetric division. Aspects of asymmetric divisions of all identified apicobasally oriented neural progenitors characterised to date, in both the central and peripheral nervous systems, require inscuteable. Here we examine the generality of this requirement.

View Article and Find Full Text PDF