Publications by authors named "Gerald Thouand"

Preserving the oceans is a major challenge for the twenty-first century. In 2000, the Water Framework Directive harmonized European regulations on water management to protect and restore the good ecological status of aquatic ecosystems, including the marine environment. This study aims to address the need to understand how pollutants affect marine ecosystems, particularly microbial communities, which are vital for ecosystem balance and biogeochemical cycling.

View Article and Find Full Text PDF

Microbial toxicity tests play an important role in various scientific and technical fields including the risk assessment of chemical compounds in the environment. There is a large battery of normalized tests available that have been standardized by ISO (International Organization for Standardization) and OECD (Organization for Economic Co-operation and Development) and which are worldwide accepted and applied. The focus of this review is to provide information on microbial toxicity tests, which are used to elucidate effects in other laboratory tests such as biodegradation tests, and for the prediction of effects in natural and technical aqueous compartments in the environment.

View Article and Find Full Text PDF

Microalgae provide valuable bio-components with economic and environmental benefits. The monitoring of microalgal production is mostly performed using different sensors and analytical methods that, although very powerful, are limited to qualified users. This study proposes an automated Raman spectroscopy-based sensor for the online monitoring of microalgal production.

View Article and Find Full Text PDF

In the past decades, industrial and scientific communities have developed a complex standardized system (e.g., OECD, ISO, CEN) to evaluate the biodegradability of chemical substances.

View Article and Find Full Text PDF

Water quality monitoring requires a rapid and sensitive method that can detect multiple hazardous pollutants at trace levels. This study aims to develop a new generation of biosensors using a low-cost fiber-optic Raman device. An automatic measurement system was thus conceived, built and successfully tested with toxic substances of three different types: antibiotics, heavy metals and herbicides.

View Article and Find Full Text PDF

Characterizing waste ecotoxicity is laborious because of both the undefined nature of environmental samples and the diversity of contaminants that can be present. With regard to these limitations, traditional approaches do not provide information about the nature of the pollution encountered. To improve such assessments, a fluorescent library of 1870 transcriptomic reporters from Escherichia coli K12 MG1655 was used to report the ecotoxic status of environmental samples.

View Article and Find Full Text PDF
Article Synopsis
  • - A novel electrochemical biosensor was developed to detect glyphosate by measuring how it inhibits the enzyme acid phosphatase, using a modified screen-printed carbon electrode.
  • - The biosensor's performance is analyzed through chronoamperometry, observing a decrease in electrical signal when glyphosate inhibits enzyme activity.
  • - Computational studies and practical applications have shown that the biosensor effectively detects glyphosate in real samples, confirming glyphosate’s role as a competitive inhibitor of acid phosphatase.
View Article and Find Full Text PDF

The aim of the present study was to evaluate Raman spectroscopy in determining changes that occur in the structure of gluten proteins induced during bread dough mixing. Raman spectra were measured directly within the dough. Three particular phases of mixing were studied: under-mixing, optimum mixing and over-mixing.

View Article and Find Full Text PDF

A novel electrochemical immunosensor was developed for label-free detection of carcinoembryonic antigen (CEA) as a cancer biomarker. The designed immunosensor was based on CEA antibody (anti-CEA) anchored with core shell FeO@Au nanoparticles which were immobilized on a screen-printed carbon electrode modified with manganese dioxide decorating on graphene nanoplatelets (SPCE/GNP-MnO/FeO@Au-antiCEA). The SPCE was placed onto a home-made electrode holder for easy handling.

View Article and Find Full Text PDF

The domestic usage of water generates approximately 310 km of wastewater worldwide (2015, AQUASTAT, Food and Agriculture Organization of United Nations). This sewage contains an important organic load due to the use of this water; this organic load is characterized using a standard method, namely, the biological oxygen demand measurement (BOD). The BOD provides information about the biodegradable organic load (standard ISO 5815).

View Article and Find Full Text PDF

We developed an easy-to-use method for the routine analysis of the central metabolism using an affordable low-resolution GC-MS system run in SIM mode. The profiling approach was optimized for the derivatization protocol of some 60 targeted metabolites. The performance of two silylation reagents (MSTFA and BSTFA) that allowed the comprehensive derivatization of 42 key intermediary metabolites of the 60 initially targeted (organic acids, phosphate derivatives, monosaccharides and amino acids) was measured.

View Article and Find Full Text PDF

Microorganisms have been very useful in environmental monitoring due to their constant sensing of the surrounding environment, their easy maintenance and low cost. Some freeze-dried toxicity kits based on naturally bioluminescent bacteria are commercially available and commonly used to assess the toxicity of environmental samples such as Microtox (Aliivibrio fischeri) or ToxScreen (Photobacterium leiognathi), however, due to the marine origin of these bacteria, they could not be the most appropriate for fresh-waters monitoring. Cyanobacteria are one of the most representative microorganisms of aquatic environments, and are well suited for detecting contaminants in aqueous samples.

View Article and Find Full Text PDF

DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) is probably the best known and most useful organochlorine insecticide in the world which was used since 1945 for agricultural purposes and also for vector-borne disease control such as malaria since 1955, until its banishment in most countries by the Stockholm convention for ecologic considerations. However, the World Health Organization allowed its reintroduction only for control of vector-borne diseases in some tropical countries in 2006. Due to its physicochemical properties and specially its persistence related with a half-life up to 30 years, DDT linked to several health and social problems which are due to its accumulation in the environment and its biomagnification properties in living organisms.

View Article and Find Full Text PDF

With thousands of organic chemicals released every day into our environment, Europe and other continents are confronted with increased risk of health and environmental problems. Even if a strict regulation such as REgistration, Authorization and restriction of CHemicals (REACH) is imposed and followed by industry to ensure that they prove the harmlessness of their substances, not all testing procedures are designed to cope with the complexity of the environment. This is especially true for the evaluation of persistence through biodegradability assessment guidelines.

View Article and Find Full Text PDF

Difficulties encountered in estimating the biodegradation of poorly water-soluble substances are often linked to their limited bioavailability to microorganisms. Many original bioavailability improvement methods (BIMs) have been described, but no global approach was proposed for a standardized comparison of these. The latter would be a valuable tool as part of a wider strategy for evaluating poorly water-soluble substances.

View Article and Find Full Text PDF

Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost.

View Article and Find Full Text PDF

The degradation of the marine environment is a subject of concern for the European authorities primarily because of its contamination by hydrocarbons. The traditional methods (ISO 11348 standard) of general toxicity assessment are unsuitable in a context of in situ monitoring, such as seaports or bathing zones. Consequently, to address this issue, bacterial biosensors appear to be pertinent tools.

View Article and Find Full Text PDF

The s-triazine herbicides are compounds which can disseminate into soils and water. Due to their toxic effects on living organisms, their concentrations in drinking water are legislated by WHO recommendations. Here we have developed for the first time, to the best of our knowledge, an alternative method for physicochemical quantification using two bioluminescent bacterial biosensors: E.

View Article and Find Full Text PDF

Over the past years, the substitution of the classical biochemical quantification techniques by Fourier transform infrared (FTIR) spectroscopy has been widely studied on microalgae because of its tremendous application potential for bioprocess monitoring. In the present work, mandatory aspects that have never been approached by FTIR end-users working onto fresh biomass were assessed. We demonstrated first that fresh cells' FTIR spectra main characteristics could be severely and unspecifically altered when the properties of the sampled biomass were not monitored.

View Article and Find Full Text PDF

Choline sulphates have two putative roles in microorganisms: as a reservoir of C, N and S and as osmoprotectants. Although there is no established connection to date regarding the relative distribution of these two functions in microbial communities, this information is crucial in determining the role of choline sulphate in soils, particularly in cultivated soils where S is limiting. Therefore, in order to establish such a connection, the diversity of choline sulphatase (betC) genes was investigated in this study using numerous fully sequenced microbes available in GenBank.

View Article and Find Full Text PDF

The society demands safer products with a better ecological profile. Regulatory criteria have been developed to prevent risks for human health and the environment, for example, within the framework of the European regulation REACH (Regulation (EC) No 1907, 2006). This has driven industry to consider the development of high throughput screening methodologies for assessing chemical biodegradability.

View Article and Find Full Text PDF

Polyether-based polyurethanes (PBP) are extremely problematic polymers due to their long persistence in the environment. Moreover, the assessment of PBP biodegradation remains biased due to the inability of conventional methods to determine how their diverse subunits are degraded. To improve our knowledge of PBP biodegradation, we used Raman spectroscopy to identify patterns of PBP biodegradation.

View Article and Find Full Text PDF

In this study, we compared two bacterial biosensors designed for the environmental monitoring of metals: Lumisens III and Lumisens IV. These two biosensors are based on the same bacterial sensors (inducible or constitutive bacterial strains) but with a different conservation mode. The results showed that the biosensor Lumisens III using immobilized cells in agarose hydrogel, allowed to detect artificial mercury contaminations on the limited period of 7 days in laboratory conditions with a reproducibility of 40%.

View Article and Find Full Text PDF