Inspired by marine organisms that utilize spines and shape changes to prevent the biofouling of their surfaces, we use computational modeling to design a gel-based composite coating that provides a two-pronged defense mechanism against the fouling of the underlying substrate. Using dissipative particle dynamics (DPD) simulations, we construct a coating that encompasses rigid posts embedded in a thermoresponsive gel, which exhibits a lower critical solution temperature (LCST). When the gel is heated above its LCST, it collapses to expose the buried posts, which act as spines or spikes that prevent a solid particle from penetrating the layer.
View Article and Find Full Text PDFUsing dissipative particle dynamics (DPD) simulations, we model the interaction between nanoscopic lipid vesicles and Janus nanoparticles in the presence of an imposed flow. Both the vesicle and Janus nanoparticles are localized on a hydrophilic substrate and immersed in a hydrophilic solution. The fluid-driven vesicle successfully picks up Janus particles on the substrate and transports these particles as cargo along the surface.
View Article and Find Full Text PDF