Publications by authors named "Gerald S Buller"

Satellite and aerial platforms are critical in the deployment of global quantum communications networks. Currently, there remain significant challenges including operation during daytime and robustness to visibility limiting conditions. In this work we investigate, through simulation, the impact of visibility limiting conditions on low-Earth orbit CubeSat dimensioned satellites, small satellites and high-altitude platform implementations.

View Article and Find Full Text PDF

Germanium-on-Silicon (Ge-on-Si) avalanche photodiodes (APDs) are of considerable interest as low intensity light detectors for emerging applications. The Ge absorption layer detects light at wavelengths up to ≈ 1600 nm with the Si acting as an avalanche medium, providing high gain with low excess avalanche noise. Such APDs are typically used in waveguide configurations as growing a sufficiently thick Ge absorbing layer is challenging.

View Article and Find Full Text PDF

Free-space quantum key distribution (QKD) systems are often designed to implement polarization-encoding protocols. Alternatively, time-bin/phase-encoding protocols are considerably more challenging to perform over a channel experiencing atmospheric turbulence. However, over the last decade, new and improved optical platforms have revived the interest in them.

View Article and Find Full Text PDF

This paper outlines an experimental demonstration of a Bayesian image reconstruction approach to achieve rapid single-photon color imaging of moving objects. The capacity to extract the color of objects is important in a variety of target identification and computer vision applications. Nonetheless, it remains challenging to achieve high-speed color imaging of moving objects in low-photon flux environments.

View Article and Find Full Text PDF

3D single-photon LiDAR imaging has an important role in many applications. However, full deployment of this modality will require the analysis of low signal to noise ratio target returns and very high volume of data. This is particularly evident when imaging through obscurants or in high ambient background light conditions.

View Article and Find Full Text PDF

We demonstrate a fully submerged underwater LiDAR transceiver system based on single-photon detection technologies. The LiDAR imaging system used a silicon single-photon avalanche diode (SPAD) detector array fabricated in complementary metal-oxide semiconductor (CMOS) technology to measure photon time-of-flight using picosecond resolution time-correlated single-photon counting. The SPAD detector array was directly interfaced to a Graphics Processing Unit (GPU) for real-time image reconstruction capability.

View Article and Find Full Text PDF

Estimating the angular separation between two incoherent thermal sources is a challenging task for direct imaging, especially at lengths within the diffraction limit. Moreover, detecting the presence of multiple sources of different brightness is an even more severe challenge. We experimentally demonstrate two tasks for super-resolution imaging based on hypothesis testing and quantum metrology techniques.

View Article and Find Full Text PDF

Inspired by plant grafting, grafted vortex beams can be formed through grafting two or more helical phase profiles of optical vortex beams. Recently, grafted perfect vortex beams (GPVBs) have attracted much attention due to their unique optical properties and potential applications. However, the current method to generate and manipulate GPVBs requires a complex and bulky optical system, hindering further investigation and limiting its practical applications.

View Article and Find Full Text PDF

In this introduction we provide an overview of the papers that were accepted for publication in the special issue on light detection and ranging (lidar). Four of the papers were published in JOSA A, and four were published in JOSA B. They represent different aspects of this important and fast-growing field while showing the relevant state-of-the-art achievements currently existing in the field of lidars in the world of science and engineering.

View Article and Find Full Text PDF

We present an optical depth imaging system suitable for highly scattering underwater environments. The system used the time-correlated single-photon counting (TCSPC) technique and the time-of-flight approach to obtain depth profiles. The single-photon detection was provided by a linear array of single-photon avalanche diode (SPAD) detectors fabricated in a customized silicon fabrication technology for optimized efficiency, dark count rate, and jitter performance.

View Article and Find Full Text PDF

Recently, time-of-flight LiDAR using the single-photon detection approach has emerged as a potential solution for three-dimensional imaging in challenging measurement scenarios, such as over distances of many kilometres. The high sensitivity and picosecond timing resolution afforded by single-photon detection offers high-resolution depth profiling of remote, complex scenes while maintaining low power optical illumination. These properties are ideal for imaging in highly scattering environments such as through atmospheric obscurants, for example fog and smoke.

View Article and Find Full Text PDF

We present the first realisation of simultaneous multi-spectral fluorescence imaging using a single-photon avalanche diode (SPAD) array, where the spectral unmixing is facilitated by a plasmonic metasurface mosaic colour filter array (CFA). A 64 × 64 pixel format silicon SPAD array is used to record widefield fluorescence and brightfield data from four biological samples. A plasmonic metasurface composed of an arrangement of circular and elliptical nanoholes etched into an aluminium thin film deposited on a glass substrate provides the high transmission efficiency CFA, enabling a bespoke spectral unmixing algorithm to reconstruct high fidelity, full colour images from as few as ∼3 photons per pixel.

View Article and Find Full Text PDF

Experimental quantum key distribution through free-space channels requires accurate pointing-and-tracking to co-align telescopes for efficient transmission. The hardware requirements for the sender and receiver could be drastically reduced by combining the detection of quantum bits and spatial tracking signal using two-dimensional single-photon detector arrays. Here, we apply a two-dimensional CMOS single-photon avalanche diode detector array to measure and monitor the single-photon level interference of a free-space time-bin receiver interferometer while simultaneously tracking the spatial position of the single-photon level signal.

View Article and Find Full Text PDF

In this article, we present a new algorithm for fast, online 3D reconstruction of dynamic scenes using times of arrival of photons recorded by single-photon detector arrays. One of the main challenges in 3D imaging using single-photon lidar in practical applications is the presence of strong ambient illumination which corrupts the data and can jeopardize the detection of peaks/surface in the signals. This background noise not only complicates the observation model classically used for 3D reconstruction but also the estimation procedure which requires iterative methods.

View Article and Find Full Text PDF

The performance of planar geometry Ge-on-Si single-photon avalanche diode detectors of 26µ diameter is presented. Record low dark count rates are observed, remaining less than 100 K counts per second at 6.6% excess bias and 125 K.

View Article and Find Full Text PDF

Large-format single-photon avalanche diode (SPAD) arrays often suffer from low fill-factors-the ratio of the active area to the overall pixel area. The detection efficiency of these detector arrays can be vastly increased with the integration of microlens arrays designed to concentrate incident light onto the active areas and may be refractive or diffractive in nature. The ability of diffractive optical elements (DOEs) to efficiently cover a square or rectangular pixel, combined with their capability of working as fast lenses (i.

View Article and Find Full Text PDF

We present a scanning light detection and ranging (LIDAR) system incorporating an individual Ge-on-Si single-photon avalanche diode (SPAD) detector for depth and intensity imaging in the short-wavelength infrared region. The time-correlated single-photon counting technique was used to determine the return photon time-of-flight for target depth information. In laboratory demonstrations, depth and intensity reconstructions were made of targets at short range, using advanced image processing algorithms tailored for the analysis of single-photon time-of-flight data.

View Article and Find Full Text PDF

This paper presents a new algorithm for the learning of spatial correlation and non-local restoration of single-photon 3-Dimensional Lidar images acquired in the photon starved regime (fewer or less than one photon per pixel) or with a reduced number of scanned spatial points (pixels). The algorithm alternates between three steps: (i) extract multi-scale information, (ii) build a robust graph of non-local spatial correlations between pixels, and (iii) the restoration of depth and reflectivity images. A non-uniform sampling approach, which assigns larger patches to homogeneous regions and smaller ones to heterogeneous regions, is adopted to reduce the computational cost associated with the graph.

View Article and Find Full Text PDF

Three-dimensional imaging in underwater environments was investigated using a picosecond resolution silicon single-photon avalanche diode (SPAD) detector array fabricated in complementary metal-oxide semiconductor (CMOS) technology. Each detector in the 192  × 128 SPAD array had an individual time-to-digital converter allowing rapid, simultaneous acquisition of data for the entire array using the time-correlated single-photon counting approach. A picosecond pulsed laser diode source operating at a wavelength of 670 nm was used to illuminate the underwater scenes, emitting an average optical power up to 8 mW.

View Article and Find Full Text PDF

Propagation losses in transmission media limit the transmission distance of optical signals. In the case where the signal is made up of quantum optical states, conventional deterministic optical amplification schemes cannot be used to increase the transmission distance as the copying of an arbitrary and unknown quantum state is forbidden. One strategy that can offset propagation loss is the use of probabilistic, or non-deterministic, amplification schemes - an example of which is the state comparison amplifier.

View Article and Find Full Text PDF

Single-photon lidar has emerged as a prime candidate technology for depth imaging through challenging environments. Until now, a major limitation has been the significant amount of time required for the analysis of the recorded data. Here we show a new computational framework for real-time three-dimensional (3D) scene reconstruction from single-photon data.

View Article and Find Full Text PDF

The ability to measure and record high-resolution depth images at long stand-off distances is important for a wide range of applications, including connected and automotive vehicles, defense and security, and agriculture and mining. In LIDAR (light detection and ranging) applications, single-photon sensitive detection is an emerging approach, offering high sensitivity to light and picosecond temporal resolution, and consequently excellent surface-to-surface resolution. The use of large format CMOS (complementary metal-oxide semiconductor) single-photon detector arrays provides high spatial resolution and allows the timing information to be acquired simultaneously across many pixels.

View Article and Find Full Text PDF

We investigate the depth imaging of objects through various densities of different obscurants (water fog, glycol-based vapor, and incendiary smoke) using a time-correlated single-photon detection system which had an operating wavelength of 1550 nm and an average optical output power of approximately 1.5 mW. It consisted of a monostatic scanning transceiver unit used in conjunction with a picosecond laser source and an individual Peltier-cooled InGaAs/InP single-photon avalanche diode (SPAD) detector.

View Article and Find Full Text PDF

Single-photon detection has emerged as a method of choice for ultra-sensitive measurements of picosecond optical transients. In the short-wave infrared, semiconductor-based single-photon detectors typically exhibit relatively poor performance compared with all-silicon devices operating at shorter wavelengths. Here we show a new generation of planar germanium-on-silicon (Ge-on-Si) single-photon avalanche diode (SPAD) detectors for short-wave infrared operation.

View Article and Find Full Text PDF

Single-photon multispectral light detection and ranging (LiDAR) approaches have emerged as a route to color reconstruction and enhanced target identification in photon-starved imaging scenarios. In this paper, we present a three-dimensional imaging system based on a time-of-flight approach which is capable of simultaneous multispectral measurements using only one single-photon detector. Unlike other techniques, this approach does not require a wavelength router in the receiver channel.

View Article and Find Full Text PDF