In response to the coronavirus disease 2019 (COVID-19) pandemic, vaccines were quickly and successfully developed and deployed, saving millions of lives globally. While first-generation vaccines are safe and effective in preventing disease caused by SARS-CoV-2, next-generation vaccines have the potential to improve efficacy and safety. Vaccines delivered by a mucosal route may elicit greater protective immunity at respiratory surfaces, thereby reducing transmission.
View Article and Find Full Text PDFFollowing the attacks of 11 September 2001, emergency preparedness within the U.S. Department of Health and Human Services, as well as at the Department of Defense and other federal agencies, received higher visibility, new mandates and increased funding.
View Article and Find Full Text PDFThis report describes a transfection-independent system for packaging alphavirus replicon vectors using modified vaccinia virus Ankara (MVA) vectors to express all of the RNA components necessary for the production of Venezuelan equine encephalitis (VEE) virus replicon particles (VRP). Infection of mammalian cells with these recombinant MVA vectors resulted in robust expression of VEE structural genes, replication of the alphavirus vector and high titers of VRP. In addition, VRP packaging was achieved in a cell type (fetal rhesus lung) that has been approved for the manufacturing of vaccines destined for human use.
View Article and Find Full Text PDFA modified cDNA rescue system that improves recovery of recombinant nonsegmented, negative-strand RNA viruses from cloned DNAs is described. Rescue systems based on vaccinia virus-T7 RNA polymerase vectors have been used to derive many negative-strand viruses; however, some strains can be recalcitrant to rescue possibly because of the simultaneous replication of the vaccinia virus-T7 vector. Our goal was to engineer a system where replication of the vaccinia virus-T7 vector could be blocked, yet allow for sufficient T7 RNA polymerase expression to enable genetic rescue.
View Article and Find Full Text PDFAlphavirus replicon particles are being exploited for a variety of purposes both in vitro as gene expression vectors, and in vivo as vaccines or gene therapy vectors. There is a need for a simple and universal method of titration of replicon particles that is independent of expression of the foreign protein. We devised a method that uses modified vaccinia virus Ankara (MVA) as an indicator virus, to deliver a Venezuelan equine encephalitis virus (VEE) defective helper RNA encoding green fluorescent protein (GFP).
View Article and Find Full Text PDFA canine distemper virus (CDV) genomic cDNA clone and expression plasmids required to establish a CDV rescue system were generated from a laboratory-adapted strain of the Onderstepoort vaccine virus. In addition, a CDV minireplicon was prepared and used in transient expression studies performed to identify optimal virus rescue conditions. Results from the transient expression experiments indicated that minireplicon-encoded reporter gene activity was increased when transfected cell cultures were maintained at 32 rather than 37 degrees C, and when the cellular stress response was induced by heat shock.
View Article and Find Full Text PDF