Publications by authors named "Gerald Poirier"

Stable isotope labeling is an extremely useful tool for characterizing the structure, tracing the metabolism, and imaging the distribution of natural products in living organisms using mass-sensitive measurement techniques. In this study, a cyanobacterium was cultured in N/ C-enriched media to endogenously produce labeled, bioactive oligopeptides. The extent of heavy isotope incorporation in these peptides was determined with LC-MS, while the overall extent of heavy isotope incorporation in whole cells was studied with nanoSIMS and AFM-IR.

View Article and Find Full Text PDF

The local structure and geometry of catalytic interfaces can influence the selectivity of chemical reactions. Selectivity is often critical for the practical realization of reactions such as the electroreduction of carbon dioxide (CO). Previously developed strategies to manipulate the structure and geometry of catalysts for electroreduction of CO involve complex processes or fail to efficiently alter the selectivity.

View Article and Find Full Text PDF

The discovery of a natural quasicrystal, icosahedrite (Al63Cu24Fe13), accompanied by khatyrkite (CuAl2) and cupalite (CuAl) in the CV3 carbonaceous chondrite Khatyrka has posed a mystery as to what extraterrestrial processes led to the formation and preservation of these metal alloys. Here we present a range of evidence, including the discovery of high-pressure phases never observed before in a CV3 chondrite, indicating that an impact shock generated a heterogeneous distribution of pressures and temperatures in which some portions reached at least 5 GPa and 1,200 °C. The conditions were sufficient to melt Al-Cu-bearing minerals, which then rapidly solidified into icosahedrite and other Al-Cu metal phases.

View Article and Find Full Text PDF

Piezoelectric nanowires are an important class of smart materials for next-generation applications including energy harvesting, robotic actuation, and bioMEMS. Lead zirconate titanate (PZT), in particular, has attracted significant attention, owing to its superior electromechanical conversion performance. Yet, the ability to synthesize crystalline PZT nanowires with well-controlled properties remains a challenge.

View Article and Find Full Text PDF

Piezoelectric nanocomposites represent a unique class of materials that synergize the advantageous features of polymers and piezoelectric nanostructures and have attracted extensive attention for the applications of energy harvesting and self-powered sensing recently. Currently, most of the piezoelectric nanocomposites were synthesized using piezoelectric nanostructures with relatively low piezoelectric constants, resulting in lower output currents and lower output voltages. Here, we report a synthesis of piezoelectric (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) nanowire-based nanocomposite with significantly improved performances for energy harvesting and self-powered sensing.

View Article and Find Full Text PDF

Young's modulus and electrical resistivity of individual titanium dioxide (TiO(2)) nanofibers were characterized using a nanomanipulator system installed in a focused ion beam-scanning electron microscope (FIB-SEM) dual-beam Scanning Electron Microscope system. Young's modulus of individual nanofibers was deduced from the analysis of their in situ resonance behavior in response to an oscillating electric field. The electrical behavior of a single nanofiber was also analyzed by a two-point method probed by a nanomanipulator.

View Article and Find Full Text PDF

A profound way to increase the output voltage (or power) of the piezoelectric nanogenerators is to utilize a material with higher piezoelectric constants. Here we report the synthesis of novel piezoelectric 0.72Pb(Mg(1/3)Nb(2/3))O(3)-0.

View Article and Find Full Text PDF