Surface faulting earthquakes are known to cluster in time from historical and palaeoseismic studies, but the mechanism(s) responsible for clustering, such as fault interaction, strain-storage, and evolving dynamic topography, are poorly quantified, and hence not well understood. We present a quantified replication of observed earthquake clustering in central Italy. Six active normal faults are studied using Cl cosmogenic dating, revealing out-of-phase periods of high or low surface slip-rate on neighboring structures that we interpret as earthquake clusters and anticlusters.
View Article and Find Full Text PDFWhether the stress-loading of faults to failure in earthquakes appears to be random or to an extent explainable, given constraints on fault/shear-zone interaction and the build-up and release of stress over many earthquake cycles, is a key question for seismic hazard assessment. Here we investigate earthquake recurrence for a system of 25 active normal faults arranged predominantly along strike from each other, allowing us to isolate the effects of stress-loading due to regional strain versus across- and along-strike fault interaction. We calculate stress changes over 6 centuries due to interseismic loading and 25 > Mw 5.
View Article and Find Full Text PDFThe temporal evolution of slip on surface ruptures during an earthquake is important for assessing fault displacement, defining seismic hazard and for predicting ground motion. However, measurements of near-field surface displacement at high temporal resolution are elusive. We present a novel record of near-field co-seismic displacement, measured with 1-second temporal resolution during the 30 October 2016 M 6.
View Article and Find Full Text PDF