The αV integrin is expressed in most cancer cells where it regulates a diverse array of cellular functions essential to the initiation, progression and metastasis of solid tumors. However, little is known about how αV integrin modulates cellular sensitivity to chemotherapeutic agents, particularly the platinum drugs. In this study, we found that down-regulation of αV sensitized human M21 cells to cisplatin (cDDP) through up-regulation of the copper influx transporter CTR1.
View Article and Find Full Text PDFThe mechanisms that control intracellular adhesion are central to the process of invasion and metastasis. Claudin-3 (CLDN3) and claudin-4 (CLDN4) are major structural molecules of the tight junctions that link epithelial cells. Our prior work has demonstrated that knockdown of the expression of either CLDN3 or CLDN4 produces marked changes in the phenotype of ovarian carcinoma cells including increases in growth rate in vivo, migration, invasion, metastasis, and drug resistance, similar to those produced by the epithelial-to-mesenchymal transition (EMT).
View Article and Find Full Text PDFThe copper (Cu) exporter ATP7B mediates cellular resistance to cisplatin (cDDP) by increasing drug efflux. ATP7B binds and sequesters cDDP in into secretory vesicles. Upon cDDP exposure ATP7B traffics from the trans-Golgi network (TGN) to the periphery of the cell in a manner that requires the cysteine residues in its metal binding domains (MBD).
View Article and Find Full Text PDFThe extent of tight junction (TJ) formation is one of many factors that regulate motility, invasion, and metastasis. Claudins are required for the formation and maintenance of TJs. Claudin-3 (CLDN3) and claudin-4 (CLDN4) are highly expressed in the majority of ovarian cancers.
View Article and Find Full Text PDFClaudin-3 (CLDN3) and claudin-4 (CLDN4) are the major structural molecules that form tight junctions (TJs) between epithelial cells. We found that knockdown of the expression of either CLDN3 or CLDN4 produced marked changes in the phenotype of ovarian cancer cells, including an increase in resistance to cisplatin (cDDP). The effect of CLND3 and CLDN4 on cDDP cytotoxicity, cDDP cellular accumulation, and DNA adduct formation was compared in the CLDN3- and CLDN4-expressing parental human ovarian carcinoma 2008 cells and CLDN3 and CLDN4 knockdown sublines (CLDN3KD and CLDN4KD, respectively).
View Article and Find Full Text PDFThe Sec61 protein translocon is a multimeric complex that transports proteins across lipid bilayers. We discovered that the Sec61β subunit modulates cellular sensitivity to chemotherapeutic agents, particularly the platinum drugs. To investigate the mechanism, expression of Sec61β was constitutively knocked down in 2008 ovarian cancer cells.
View Article and Find Full Text PDFCancer Chemother Pharmacol
October 2011
Purpose: Luteinizing hormone receptor (LHR) is found in abundance on human ovarian, breast, endometrial and prostate carcinomas but at only low levels on non-gonadal tissues. To selectively kill LHR-expressing tumors, granzyme B (GrB) was linked to a protein in which both chains of human chorionic gonadotropin were yoked together (YCG).
Methods: GrB-YCG was expressed and secreted from insect Sf9 cells.
Background: Treatment of tumors with macromolecular toxins directed to cytoplasmic targets requires selective endocytosis followed by release of intact toxin from the endosomal/lysosomal compartment. The latter step remains a particular challenge. Claudins 3 and 4 are tight junction proteins that are over-expressed in many types of tumors.
View Article and Find Full Text PDFUsing gene expression profiling, others and we have recently found that claudin-3 (CLDN3) and claudin-4 (CLDN4) are two of the most highly and consistently up-regulated genes in ovarian carcinomas. Because these tight junction proteins are the naturally occurring receptors for Clostridium perfringens enterotoxin (CPE), in this study, we used the COOH-terminal 30 amino acids of the CPE (CPE(290-319)), a fragment that is known to retain full binding affinity but have no cytolytic effect, to target tumor necrosis factor (TNF) to ovarian cancers. We constructed a pET32-based vector that expressed the fusion protein, designated here as CPE(290-319)-TNF, in which CPE(290-319) was fused to TNF at its NH(2)-terminal end.
View Article and Find Full Text PDFThis paper describes the development of a new class of N-linked imidazoles as potential pH-sensitive, cleavable linkers for use in cancer drug delivery systems. Kinetic analysis of eight derivatives of N-ethoxybenzylimidazoles (NEBIs) showed that their rates of hydrolysis are accelerated in mild aqueous acidic solutions compared to in solutions at normal, physiological pH. Incorporation of electron donating or electron withdrawing substituents on the phenyl ring of the NEBI resulted in the ability to tune the rates of hydrolysis under mild acidic conditions with half-lives ranging from minutes to months.
View Article and Find Full Text PDFThe goal of this study was to determine the ability of the major copper influx transporter CTR1 to mediate the cellular accumulation of cisplatin (DDP), carboplatin (CBDCA), and oxaliplatin (L-OHP). Wild-type murine embryonic fibroblasts (CTR1+/+) and a subline in which both alleles of CTR1 were deleted (CTR1-/-) were tested for their ability to accumulate platinum when exposed to increasing concentrations of DDP, CBDCA, or L-OHP for 1 h. They were also tested for their sensitivity to the growth-inhibitory effect of each drug.
View Article and Find Full Text PDFPurpose: The goal of this study was to identify molecular determinants of sensitivity and resistance to JM118, the active metabolite of satraplatin, an orally bioavailable cisplatin analog that has activity in prostate cancer.
Experimental Design: Human ovarian carcinoma 2008/JM118 cells were derived from parental 2008 cells by repeated exposure to JM118; the revertant 2008/JM118/REV subline was isolated from the 2008/JM118 cells by growth in the absence of drug. Drug sensitivity was determined by clonogenic assay and Pt levels were measured by ICP-MS.
Cancer Chemother Pharmacol
September 2006
The goal of this study was to identify genes consistently differentially expressed in multiple pairs of isogenic cisplatin (DDP)-sensitive and resistant human ovarian carcinoma cell lines using microarray-based expression profiling. Expression profiling was carried out on six pairs of ovarian carcinoma cells lines growing under identical conditions; each cell expression profile was independently replicated six times. No genes were differentially expressed in all six pairs of cells or even in even in any five of the six pairs.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2005
In order to identify genes whose expression is associated with resistance to the chemotherapeutic agent oxaliplatin, transcripts differentially expressed between an oxaliplatin sensitive and a stably resistant subline were compared in six independent replicates using Stanford cDNA microarrays for five cell lines. "Significance analysis of microarrays" (SAM) was used to identify genes whose expression was statistically significantly different in the sensitive versus resistant members of each cell line pair. The biochemical pathways of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were searched to identify those pathways in which the number of SAM-identified genes exceeded the number expected.
View Article and Find Full Text PDFUsing random screening for genetic suppressor elements, we sought to identify portions of hMSH2 important to the ability of the mismatch repair system to recognize and process DNA adducts that mimic mismatches. All recovered candidate genetic suppressor elements were derived from the region containing amino acids 782 to 844. Expression of a peptide corresponding to this region partially disabled mismatch repair as evidenced by 1.
View Article and Find Full Text PDFPharmacogenomics is a fast-growing field of investigations that aims to further elucidate the inherited nature of interindividual differences in drug disposition and effects, with the ultimate goal of providing a stronger scientific basis for selecting the optimal drug therapy. Providing the right drug for the right patient is an important problem in the treatment of cancer. This is mainly due to the lack of information about the sensitivity of the tumor for a specific treatment modality, such as either chemotherapy or radiation treatment.
View Article and Find Full Text PDF