Biomech Model Mechanobiol
December 2024
This study presents a novel methodology for high-resolution 3D bladder modeling during filling, developed by leveraging improved imaging and computational techniques. Using murine bladder filling data, the methodology generates accurate 3D geometries across time, enabling in-depth mechanical analysis. Comparison with a traditional spherical model revealed similar stress trends, but the 3D model permitted nuanced quantifications, such as localized surface curvature and stress analysis.
View Article and Find Full Text PDFThe transitional epithelial cells (urothelium) that line the lumen of the urinary bladder form a barrier between potentially harmful pathogens, toxins, and other bladder contents and the inner layers of the bladder wall. The urothelium, however, is not simply a passive barrier, as it can produce signaling factors, such as ATP, nitric oxide, prostaglandins, and other prostanoids, that can modulate bladder function. We investigated whether substances produced by the urothelium could directly modulate the contractility of the underlying urinary bladder smooth muscle.
View Article and Find Full Text PDFBiomech Model Mechanobiol
October 2023
Optimal bladder compliance is essential to urinary bladder storage and voiding functions. Calculated as the change in filling volume per change in pressure, bladder compliance is used clinically to characterize changes in bladder wall biomechanical properties that associate with lower urinary tract dysfunction. But because this method calculates compliance without regard to wall structure or wall volume, it gives little insight into the mechanical properties of the bladder wall during filling.
View Article and Find Full Text PDFA balance between stiffness and compliance is essential to normal bladder function, and changes in the mechanical properties of the bladder wall occur in many bladder pathologies. These changes are often associated with the release of basic secretagogues that in turn drive the release of inflammatory mediators from mast cells. Mast cell degranulation by basic secretagogues is thought to occur by activating an orphan receptor, Mas-related G protein-coupled receptor B2 (Mrgprb2).
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
November 2022
Storage and voiding functions in urinary bladder are well-known, yet fundamental physiological events coordinating these behaviors remain elusive. We sought to understand how voiding function is influenced by the rate at which the bladder fills. We hypothesized that faster filling rates would increase afferent sensory activity and increase micturition rate.
View Article and Find Full Text PDFIn the urinary bladder, mechanosensitive ion channels (MSCs) underlie the transduction of bladder stretch into sensory signals that are relayed to the PNS and CNS. PIEZO1 is a recently identified MSC that is Ca permeable and is widely expressed throughout the lower urinary tract. Recent research indicates that PIEZO1 is activated by mechanical stretch or by pharmacological agonism via Yoda1.
View Article and Find Full Text PDFThe startle response is an unconditional reflex, characterized by the rapid contraction of facial and skeletal muscles, to a sudden and intense startling stimulus. It is an especially useful tool in translational research for its consistency across species, simple neural circuitry, and sensitivity to a variety of experimental manipulations. The rodent acoustic startle response is commonly used to study fundamental properties of the central nervous system, including habituation, sensitization, classical conditioning, fear and anxiety, sensorimotor gating, and drug effects.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
This paper describes a course that, as a result of a university-industry partnership, emphasizes bringing industry experts into the classroom to teach biomedical design. Full-time faculty and industry engineers and entrepreneurs teach the senior technical elective course, Biomedical System Design. This hands-on senior course in biomedical system design places varied but connected emphasis on understanding the biological signal source, electronics design, safety, patient use, medical device qualifications, and good manufacturing practices.
View Article and Find Full Text PDFMost physiological systems show daily variations in functional output, entrained to the day-night cycle. Humans exhibit a daily rhythm in urinary voiding (micturition), and disruption of this rhythm (nocturia) has significant clinical impact. However, the underlying mechanisms are not well-understood.
View Article and Find Full Text PDFThe Pavlovian conditioned freezing paradigm has become a prominent mouse and rat model of learning and memory, as well as of pathological fear. Due to its efficiency, reproducibility and well-defined neurobiology, the paradigm has become widely adopted in large-scale genetic and pharmacological screens. However, one major shortcoming of the use of freezing behavior has been that it has required the use of tedious hand scoring, or a variety of proprietary automated methods that are often poorly validated or difficult to obtain and implement.
View Article and Find Full Text PDFIn humans, the storage and voiding functions of the urinary bladder have a characteristic diurnal variation, with increased voiding during the day and urine storage during the night. However, in animal models, the daily functional differences in urodynamics have not been well-studied. The goal of this study was to identify key urodynamic parameters that vary between day and night.
View Article and Find Full Text PDFPituitary adenylate cyclase-activating polypeptide (PACAP) elicits a transient contraction, sustained increase in the amplitude of spontaneous phasic contractions, and significantly increases the amplitude of nerve-mediated contractions in mouse urinary bladder smooth muscle (UBSM) strips. PACAP immunoreactivity (IR) is increased in micturition reflex pathways following cystitis. PACAP may contribute to altered sensation and bladder overactivity in the chronic bladder inflammatory syndrome, interstitial cystitis.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2005
When the urinary bladder is full, activation of parasympathetic nerves causes release of neurotransmitters that induce forceful contraction of the detrusor muscle, leading to urine voiding. The roles of ion channels that regulate contractility of urinary bladder smooth muscle (UBSM) in response to activation of parasympathetic nerves are not well known. The present study was designed to characterize the role of large (BK)- and small-conductance (SK) Ca(2+)-activated K(+) (K(Ca)) channels in regulating UBSM contractility in response to physiological levels of nerve stimulation in UBSM strips from mice.
View Article and Find Full Text PDFNegative feedback pathways that relax and stabilize UBSM are critical to the proper functioning of the urinary bladder. The complex interactions between K(Ca) channels and RyRs are just beginning to be unraveled. The consequences of SK, BK, and RyR dysfunction would increase cell excitability and lead to urinary bladder instability.
View Article and Find Full Text PDFSmall conductance, calcium-activated potassium (SK) channels have an important role in determining the excitability and contractility of urinary bladder smooth muscle. Here, the role of the SK isoform SK3 was examined by altering expression levels of the SK3 gene using a mouse model that conditionally overexpresses SK3 channels (SK3T/T). Prominent SK3 immunostaining was found in both the smooth muscle (detrusor) and urothelium layers of the urinary bladder.
View Article and Find Full Text PDFLocal and global Ca2+ signals from voltage-dependent Ca2+ channels (VDCCs) and ryanodine-sensitive Ca2+ release (RyRs) channels in the sarcoplasmic reticulum (SR) encode information to different Ca2+-sensitive targets including the large- (BK) and small-conductance (SK) Ca2+-activated K+ channels in the surface membrane. In smooth muscle, unlike cardiac muscle, Ca2+ signalling to RyRs is not local, exhibiting a significant lag between VDCC activation and subsequent RyR stimulation, measured as Ca2+ sparks and associated BK currents. However, Ca2+ signalling from RyRs (Ca2+ sparks) to BK channels appears to be local in arterial (ASM) and urinary bladder smooth muscle (UBSM), consistent with a close proximity of SR RyRs to BK channels.
View Article and Find Full Text PDFSmall-conductance (SK) and large-conductance (BK) Ca(2+)-activated K(+) channels are key regulators of excitability in urinary bladder smooth muscle (UBSM) of guinea-pig. The overall goal of this study was to define how SK and BK channels respond to Ca(2+) signals from voltage-dependent Ca(2+) channels (VDCCs) in the surface membrane and from ryanodine-sensitive Ca(2+) release channels or ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) membrane. To characterize the role of SK channels in UBSM, the effects of the SK channel blocker apamin on phasic contractions were examined.
View Article and Find Full Text PDF