Antibody-drug conjugates (ADCs) consist of an antibody backbone that recognizes and binds to a target antigen expressed on tumor cells and a small molecule chemotherapy payload that is conjugated to the antibody via a linker. ADCs are one of the most promising therapeutic modalities for the treatment of various cancers. However, many patients have developed resistance to this form of therapy.
View Article and Find Full Text PDFWhile promising, PD-L1 expression on tumor tissues as assessed by immunohistochemistry has been shown to be an imperfect biomarker that only applies to a limited number of cancers, whereas many patients with PD-L1-negative tumors still respond to anti-PD-(L)1 immunotherapy. Recent studies using patient blood samples to assess immunotherapeutic responsiveness suggests a promising approach to the identification of novel and/or improved biomarkers for anti-PD-(L)1 immunotherapy. In this review, we discuss the advances in our evolving understanding of the regulation and function of PD-L1 expression, which is the foundation for developing blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy.
View Article and Find Full Text PDFImmune checkpoint inhibitor (ICI) therapy has revolutionized anti-cancer treatment for many late-stage cancer patients. However, ICI therapy has thus far demonstrated limited efficacy for most patients, and it remains unclear why this is so. Interleukin 10 (IL-10) is a cytokine that has been recognized as a central player in cancer biology with its ability to inhibit anti-tumor T cell responses.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) represent a promising therapy for many types of cancer. However, only a portion of patients respond to this therapy and some patients develop clinically significant immune-mediated liver injury caused by immune checkpoint inhibitors (ILICI), an immune-related adverse event (irAE) that may require the interruption or termination of treatment and administration of systemic corticosteroids or other immunosuppressive agents. Although the incidence of ILICI is lower with monotherapy, the surge in combining ICIs with chemotherapy, targeted therapy, and combination of different ICIs has led to an increase in the incidence and severity of ILICI - a major challenge for development of effective and safe ICI therapy.
View Article and Find Full Text PDFThe absence of reliable, robust, and non-invasive biomarkers for anti- Programmed cell death protein 1 (PD-1) immunotherapy is an urgent unmet medical need for the treatment of cancer patients. No predictive biomarkers have been established based on the direct assessment of T cell functions, the primary mechanism of action of anti-PD-1 therapy. In this study, we established a model system to test T cell functions modulated by Nivolumab using anti-CD3 monoclonal antibody (mAb)-stimulated peripheral blood mononuclear cells (PBMCs), and characterized T cell functions primarily based on the knowledge gained from retrospective observations of patients treated with anti-PD-1 immunotherapy.
View Article and Find Full Text PDFTherapeutic proteins can be potent agents for treating serious diseases, but in many patients these proteins provoke antibody responses that blunt therapeutic efficacy. Intravenous administration of high doses of some proteins induces immune tolerance, but the mechanisms underlying this effect are poorly understood. As a model to study tolerance induction in mice, we used rasburicase, a commercial recombinant uricase used for the treatment of hyperuricemia.
View Article and Find Full Text PDFTherapeutic monoclonal antibodies (mAbs) are commonly administered to patients through intravenous (IV) infusion, which involves diluting the medication into an infusion solution (e.g., saline and 5% dextrose).
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) such as the anti-PD-1 antibody Nivolumab, achieve remarkable clinical efficacy in patients with late stage cancers. However, only a small subset of patients benefit from this therapy. Numerous clinical trials are underway testing whether combining ICIs with other anti-cancer therapies can increase this response rate.
View Article and Find Full Text PDFThe protein phosphatase 2A (PP2A) inhibitor, LB100, has been shown in pre-clinical studies to be an effective chemo- and radio-sensitizer for treatment of various cancers. We investigated effects associated with LB100 treatment alone and in combination with cisplatin for medulloblastoma (MB) in vitro and in vivo in an intracranial xenograft model. We demonstrated that LB100 had a potent effect on MB cells.
View Article and Find Full Text PDFWe have recently discovered that BRAF inhibitors induce potent macrophage responses that confer melanoma resistance to therapy. Our studies lay a foundation for the hypothesis that macrophages switch their role from a passenger to a driver for tumor survival during therapeutic treatment, suggesting that agents that target macrophages can be an important component of "cocktail" anticancer therapy.
View Article and Find Full Text PDFFcγ receptor I (FcγRI or CD64) is the sole human Fc receptor with high affinity for monovalent IgG. While it contains an immunoreceptor tyrosine-based activation motif in its cytoplasmic domain, binding of FcγRI can result in a complex array of activating and inhibitory outcomes. For instance, binding of monomeric IgG provides a low-intensity tonic signal through FcγRI that is necessary for full interferon γ receptor signaling in the same cell.
View Article and Find Full Text PDFTransfusion of blood and blood products contaminated with the pathogenic form of prion protein Prp(sc), thought to be the causative agent of variant a Creutzfeldt-Jakob disease (vCJD), may result in serious consequences in recipients with a compromised immune system, for example, as seen in HIV-1 infection. In the present study, we demonstrate that treatment of peripheral blood monocyte-derived macrophages (MDM) with PrP106-126, a synthetic domain of PrP(sc) that has intrinsic functional activities related to the full-length protein, markedly increased their susceptibility to HIV-1 infection, induced cytokine secretion, and enhanced their migratory behavior in response to N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP). Live-cell imaging of MDM cultured in the presence of PrP106-126 showed large cell clusters indicative of cellular activation.
View Article and Find Full Text PDFThe regulation of the innate and the adaptive immune responses are extensively intertwined and tightly regulated. Ag-driven immune responses that are modulated by immune complexes (ICs) are known to inhibit IFN-γ-dependent MHC class II expression. We have previously demonstrated that ICs dramatically inhibit IFN-γ-induced activation of human monocytes through the activation of the FcγRI signaling pathway.
View Article and Find Full Text PDFAntibodies evoke cellular responses through the binding of their Fc region to Fc receptors, most of which contain immunoreceptor tyrosine-based activation motif domains and are thus considered "activating." However, there is a growing appreciation of these receptors for their ability to deliver an inhibitory signal as well. We previously described one such phenomenon whereby interferon (IFN)γ signaling is inhibited by immune complex signaling through FcγRI.
View Article and Find Full Text PDFIL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO).
View Article and Find Full Text PDFIL-13 induces profound expression of 15-lipoxygenase (15-LO) in primary human monocytes. Our studies have defined the functional IL-13R complex, association of Jaks with the receptor components, and the tyrosine phosphorylation of several Stat molecules in response to IL-13. Furthermore, we identified both p38MAPK and protein kinase Cδ as critical regulators of 15-LO expression.
View Article and Find Full Text PDFAnnexins are a large family of intracellular phospholipid-binding proteins, yet several extracellular roles have been identified. Specifically, annexin A2, found in a heterotetrameric complex with S100A10, not only serves as a key extracellular binding partner for pathogens and host proteins alike, but also can be shed or secreted. We reported previously that soluble annexin A2 tetramer (A2t) activates human monocyte-derived macrophages (MDM), resulting in secretion of inflammatory mediators and enhanced phagocytosis.
View Article and Find Full Text PDFIdentification of novel signal transduction pathways regulating monocyte chemotaxis can indicate unique targets for preventive therapies for treatment of chronic inflammatory diseases. To aid in this endeavor we report conditions for optimal transfection of primary human monocytes coupled with a new model system for assessing their chemotactic activity in vivo. This method can be used as a tool to identify the relevant signal transduction pathways regulating human monocyte chemotaxis to MCP-1 in the complex in vivo environment that were previously identified to regulate chemotaxis in vitro.
View Article and Find Full Text PDFOn the surface of the macrophage, annexin A2 tetramer (A2t) serves as a docking protein or recognition element for bacterial and viral pathogens. Plasma levels of free A2t have been reported to increase following infection, although the mechanistic significance of this observation is unclear. Although annexin A2 had generally been thought to play an anti-inflammatory role, soluble A2t stimulates MAP kinase activity in bone marrow stromal cells downstream of a recently cloned receptor.
View Article and Find Full Text PDFObjective: The objective of the study was to determine whether cross-talk occurs between estrogen receptors (ERs) and nuclear factor-kappa-B (NF-kappaB), to assess the functional consequences of such an ER/NF-kappaB interaction, and to identify other unknown regulatory proteins that may participate in the NF-kappaB transcriptional complex.
Study Design: Electromobility gel shifts, reporter gene assays, and mass spectrometry were used to identify proteins interacting with the NF-kappaB deoxyribonucleic acid (DNA) response element.
Results: ER and the p65 subunit of NF-kappaB colocalized on DNA.
Antigen-driven immune responses are modulated by immune complexes (ICs), in part through their ability to inhibit IFN-gamma-dependent MHC Class II expression. We have demonstrated previously that ICs dramatically inhibit IFN-gamma-induced activation of human monocytes through the suppression of the JAK/STAT signaling pathway. In the current study, we further explore the mechanisms by which ICs regulate IFN-gamma activation of human monocytes.
View Article and Find Full Text PDFOur previous studies demonstrated that the IL-13-induced 15-lipoxygenase expression in primary human monocytes is regulated by the activation of both Stat1 and Stat3 and by protein kinase C (PKC)delta. IL-13 stimulated the phosphorylation of Stat3 on both Tyr705 and Ser727. In this study we show that IL-13 induces the association of PKCdelta with Stat3, not with Stat1, and is required for Stat3 Ser727 phosphorylation.
View Article and Find Full Text PDFPhosphorylation of the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase components p67phox and p47phox accompanies the assembly and activation of this enzyme complex. We have previously reported that activation of human monocytes with opsonized zymosan (ZOP), a potent stimulator of NADPH oxidase activity, results in the phosphorylation of p67phox and p47phox. In this study, we investigated the regulation of p67phox phosphorylation.
View Article and Find Full Text PDFOur laboratory is interested in understanding the regulation of NADPH oxidase activity in human monocyte/macrophages. Protein kinase C (PKC) is reported to be involved in regulating the phosphorylation of NADPH oxidase components in human neutrophils; however, the regulatory roles of specific isoforms of PKC in phosphorylating particular oxidase components have not been determined. In this study calphostin C, an inhibitor for both novel PKC (including PKCdelta, -epsilon, -theta;, and -eta) and conventional PKC (including PKCalpha and -beta), inhibited both phosphorylation and translocation of p47phox, an essential component of the monocyte NADPH oxidase.
View Article and Find Full Text PDF