Publications by authors named "Gerald M Carlson"

Brain glycogen is extremely difficult to study because it is very labile to physiological status and postmortem autolysis, and glycogen degradative enzymes are rapidly activated by metabolites and signaling molecules. Glycogen is predominantly located within astrocytes in adult brain, and abnormal glycogen metabolism in neurons has lethal consequences. Diverse distribution of glycogen among subcellular compartments suggests local regulation and different functional roles, and recent studies have revealed critically important roles for glycogen in normal brain function and Lafora disease.

View Article and Find Full Text PDF

The synthesis of glycogen allows for efficient intracellular storage of glucose molecules in a soluble form that can be rapidly released to enter glycolysis in response to energy demand. Intensive studies of glucose and glycogen metabolism, predominantly in skeletal muscle and liver, have produced innumerable insights into the mechanisms of hormone action, resulting in the award of several Nobel Prizes over the last one hundred years. Glycogen is actually present in all cells and tissues, albeit at much lower levels than found in muscle or liver.

View Article and Find Full Text PDF

The key regulatory enzymes of glycogenolysis are phosphorylase kinase, a hetero-oligomer with four different types of subunits, and glycogen phosphorylase, a homodimer. Both enzymes are activated by phosphorylation and small ligands, and both enzymes have distinct isoforms that are predominantly expressed in muscle, liver, or brain; however, whole-transcriptome high-throughput sequencing analyses show that in brain both of these enzymes are likely composed of subunit isoforms representing all three tissues. This Minireview examines the regulatory properties of the isoforms of these two enzymes expressed in the three tissues, focusing on their potential regulatory similarities and differences.

View Article and Find Full Text PDF

In the tightly regulated glycogenolysis cascade, the breakdown of glycogen to glucose-1-phosphate, phosphorylase kinase (PhK) plays a key role in regulating the activity of glycogen phosphorylase. PhK is a 1.3 MDa hexadecamer, with four copies each of four different subunits (α, β, γ and δ), making the study of its structure challenging.

View Article and Find Full Text PDF

Phosphorylase kinase (PhK), a 1.3 MDa regulatory enzyme complex in the glycogenolysis cascade, has four copies each of four subunits, (αβγδ) , and 325 kDa of unique sequence (the mass of an αβγδ protomer). The α, β and δ subunits are regulatory, and contain allosteric activation sites that stimulate the activity of the catalytic γ subunit in response to diverse signaling molecules.

View Article and Find Full Text PDF

Modern mass spectrometry (MS) technologies have provided a versatile platform that can be combined with a large number of techniques to analyze protein structure and dynamics. These techniques include the three detailed in this chapter: (1) hydrogen/deuterium exchange (HDX), (2) limited proteolysis, and (3) chemical crosslinking (CX). HDX relies on the change in mass of a protein upon its dilution into deuterated buffer, which results in varied deuterium content within its backbone amides.

View Article and Find Full Text PDF

The selective phosphorylation of glycogen phosphorylase (GP) by its only known kinase, phosphorylase kinase (PhK), keeps glycogen catabolism tightly regulated. In addition to the obligatory interaction between the catalytic γ subunit of PhK and the phosphorylatable region of GP, previous studies have suggested additional sites of interaction between this kinase and its protein substrate. Using short chemical crosslinkers, we have identified direct interactions of GP with the large regulatory α and β subunits of PhK.

View Article and Find Full Text PDF

Allosteric regulation of protein function is recognized to be widespread throughout biology; however, knowledge of allosteric mechanisms, the molecular changes within a protein that couple one binding site to another, is limited. Although mutagenesis is often used to probe allosteric mechanisms, we consider herein what the outcome of a mutagenesis study truly reveals about an allosteric mechanism. Arguably, the best way to evaluate the effects of a mutation on allostery is to monitor the allosteric coupling constant (Qax), a ratio of the substrate binding constants in the absence versus presence of an allosteric effector.

View Article and Find Full Text PDF

In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.

View Article and Find Full Text PDF

Phosphorylase kinase (PhK) is a 1.3 MDa (αβγδ)4 enzyme complex, in which αβγδ protomers associate in D2 symmetry to form two large octameric lobes that are interconnected by four bridges. The approximate locations of the subunits have been mapped in low-resolution cryo-electron microscopy structures of the complex; however, the disposition of the subunits within the complex remains largely unknown.

View Article and Find Full Text PDF

Phosphorylase kinase (PhK) is a hexadecameric (αβγδ)(4) enzyme complex that upon activation by phosphorylation stimulates glycogenolysis. Due to its large size (1.3 MDa), elucidating the structural changes associated with the activation of PhK has been challenging, although phosphoactivation has been linked with an increased tendency of the enzyme's regulatory β-subunits to self-associate.

View Article and Find Full Text PDF

For over four decades free Mg(2+) ions, that is, those in excess of MgATP, have been reported to affect a wide variety of properties of phosphorylase kinase (PhK), including its affinity for other molecules, proteolysis, chemical crosslinking, phosphorylation, binding to certain monoclonal antibodies, and activity, which is stimulated. Additionally, for over three decades Mg(2+) has been known to act synergistically with Ca(2+) , another divalent activator of PhK, to affect even more properties of the enzyme. During all of this time, however, no study has been performed to determine the overall effects of free Mg(2+) ions on the physical properties of PhK, even though the effects of Ca(2+) ions on PhK's properties are well documented.

View Article and Find Full Text PDF

Phosphorylase kinase (PhK) is a hexadecameric (αβγδ)(4) complex that regulates glycogenolysis in skeletal muscle. Activity of the catalytic γ subunit is regulated by allosteric activators targeting the regulatory α, β, and δ subunits. Three-dimensional EM reconstructions of PhK show it to be two large (αβγδ)(2) lobes joined with D(2) symmetry through interconnecting bridges.

View Article and Find Full Text PDF

Phosphorylase kinase (PhK), a 1.3 MDa enzyme complex that regulates glycogenolysis, is composed of four copies each of four distinct subunits (α, β, γ, and δ). The catalytic protein kinase subunit within this complex is γ, and its activity is regulated by the three remaining subunits, which are targeted by allosteric activators from neuronal, metabolic, and hormonal signaling pathways.

View Article and Find Full Text PDF

This chapter explores the structural responses of a massive, hetero-oligomeric protein complex to a single allosteric activator as probed by a wide range of chemical, biochemical, and biophysical approaches. Some of the approaches used are amenable only to large protein targets, whereas others push the limits of their utility. Some of the techniques focus on individual subunits, or portions thereof, while others examine the complex as a whole.

View Article and Find Full Text PDF

Phosphorylase kinase (PhK), an (alphabetagammadelta)(4) complex, stimulates energy production from glycogen in the cascade activation of glycogenolysis. Its large homologous alpha and beta subunits regulate the activity of the catalytic gamma subunit and account for 81% of PhK's mass. Both subunits are thought to be multidomain structures, and recent predictions based on their sequences suggest the presence of potentially functional glucoamylase (GH15)-like domains near their amino termini.

View Article and Find Full Text PDF

Understanding the regulatory interactions among the 16 subunits of the (alphabetagammadelta)(4) phosphorylase b kinase (PhK) complex can only be achieved through reconstructing the holoenzyme or its subcomplexes from the individual subunits. In this study, recombinant baculovirus carrying a vector containing a multigene cassette was created to coexpress in insect cells alpha, beta, gamma, and delta subunits corresponding to rabbit skeletal muscle PhK. The hexadecameric recombinant PhK (rPhK) and its corresponding alphagammadelta trimeric subcomplex were purified to homogeneity with proper subunit stoichiometries.

View Article and Find Full Text PDF

Phosphorylase kinase (PhK) regulates glycogenolysis through its Ca(2+)-dependent phosphorylation and activation of glycogen phosphorylase. The activity of PhK increases dramatically as the pH is raised from 6.8 to 8.

View Article and Find Full Text PDF

Skeletal muscle phosphorylase kinase (PhK) is an (alphabetagammadelta) 4 hetero-oligomeric enzyme complex that phosphorylates and activates glycogen phosphorylase b (GP b) in a Ca (2+)-dependent reaction that couples muscle contraction with glycogen breakdown. GP b is PhK's only known in vivo substrate; however, given the great size and multiple subunits of the PhK complex, we screened muscle extracts for other potential targets. Extracts of P/J (control) and I/lnJ (PhK deficient) mice were incubated with [gamma- (32)P]ATP with or without Ca (2+) and compared to identify potential substrates.

View Article and Find Full Text PDF

Chemical cross-linking and high resolution MS have been integrated successfully to capture protein interactions and provide low resolution structural data for proteins that are refractive to analyses by NMR or crystallography. Despite the versatility of these combined techniques, the array of products that is generated from the cross-linking and proteolytic digestion of proteins is immense and generally requires the use of labeling strategies and/or data base search algorithms to distinguish actual cross-linked peptides from the many side products of cross-linking. Most strategies reported to date have focused on the analysis of small cross-linked protein complexes (<60 kDa) because the number of potential forms of covalently modified peptides increases dramatically with the number of peptides generated from the digestion of such complexes.

View Article and Find Full Text PDF

Skeletal muscle phosphorylase kinase (PhK) is a Ca(2+)-dependent enzyme complex, (alpha beta gamma delta)(4), with the delta subunit being tightly bound endogenous calmodulin (CaM). The Ca(2+)-dependent activation of glycogen phosphorylase by PhK couples muscle contraction with glycogen breakdown in the "excitation-contraction-energy production triad." Although the Ca(2+)-dependent protein-protein interactions among the relevant contractile components of muscle are well characterized, such interactions have not been previously examined in the intact PhK complex.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on how phosphoenolpyruvate (PEP) and oxaloacetate (OAA) are recognized and inhibited by the enzyme cytosolic phosphoenolpyruvate carboxykinase (cPEPCK).
  • Different analogues of PEP and OAA were tested, revealing that mimics of PEP bind weakly while mimics of OAA bind much more tightly due to direct coordination with the enzyme's manganese ion.
  • An outlier inhibitor, sulfoacetate, was identified, demonstrating a hybrid binding approach, and the research outlined key structural features necessary for effective binding to the enzyme's active site.
View Article and Find Full Text PDF