Methods Mol Biol
January 2013
The study of gene function has been greatly facilitated by the development of strategies to modify genomic DNA. Gene targeting is one of the most successfully applied techniques used to examine the roles of specific genes in a wide variety of model systems from yeast to mammals. Our laboratory has pioneered the use of the Chinese hamster ovary (CHO) cell culture model system to study pathways of DNA repair and recombination at the hemizygous CHO APRT locus.
View Article and Find Full Text PDFThe ERCC1-XPF structure-specific endonuclease is necessary for correct processing of homologous recombination intermediates requiring the removal of end-blocking nonhomologies. We previously showed that targeting the endogenous CHO APRT locus with plasmids designed to generate such intermediates revealed defective recombination phenotypes in ERCC1 deficient cells, including suppression of targeted insertion and vector correction recombinants and the generation of a novel class of aberrant recombinants through a deletogenic mechanism. In the present study, we examined some of the mechanistic features of ERCC1-XPF in processing recombination intermediates by varying gene targeting parameters.
View Article and Find Full Text PDFWerner syndrome (WS) is a rare, segmental progeroid syndrome caused by defects in the WRN gene, which encodes a RecQ helicase. WRN has roles in many aspects of DNA metabolism including DNA repair and recombination. In this study, we exploited two different recombination assays previously used to describe a role for the structure-specific endonuclease ERCC1-XPF in mitotic and targeted homologous recombination.
View Article and Find Full Text PDFEnviron Mol Mutagen
July 2010
DNA interstrand crosslinks (ICLs) are among the most deleterious cytotoxic lesions encountered by cells, mainly due to the covalent linkage these lesions create between the two strands of DNA which effectively blocks replication and transcription. Although ICL repair in mammalian cells is not fully understood, processing of these lesions is thought to begin by "unhooking" at the site of the damaged base accompanied by the generation of a double strand break and ultimately repair through translesion synthesis and homologous recombination. A key player in this repair process is the heterodimeric protein complex ERCC1-XPF.
View Article and Find Full Text PDFThe UV hypersensitive CHO cell mutant UV41 is the archetypal XPF mammalian cell mutant, and was essential for cloning the human nucleotide excision repair (NER) gene XPF by DNA transfection and rescue. The ERCC1 and XPF genes encode proteins that form the heterodimer responsible for making incisions required in NER and the processing of certain types of recombination intermediates. In this study, we cloned and sequenced the CHO cell XPF cDNA, determining that the XPF mutation in UV41 is a +1 insertion in exon 8 generating a premature stop codon at amino acid position 499; however, the second allele of XPF is apparently unaltered in UV41, resulting in XPF heterozygosity.
View Article and Find Full Text PDFMethods Mol Biol
June 2006
Gene targeting by homologous recombination in mammalian cells is an important tool for generating genetically modified mice used for modeling human diseases. Gene targeting approaches are also useful for studying the mechanisms of homologous recombination. We have developed gene targeting methods that we have specifically used to investigate the mechanisms of recombination in cultured mammalian cells.
View Article and Find Full Text PDFDNA damage is preferentially repaired in the transcribed strand of many active genes. Although the concept of DNA repair coupled with transcription has been widely accepted, its mechanisms remain elusive. We recently reported that in Chinese hamster ovary cells while ultraviolet light-induced cyclobutane pyrimidine dimers (CPDs) are preferentially repaired in the transcribed strand of dihydrofolate reductase gene, CPDs are efficiently repaired in both strands of adenine phosphoribosyltransferase (APRT) locus, in either a transcribed or nontranscribed APRT gene (1).
View Article and Find Full Text PDF