A calcium (Ca) prerinse before a fluoride (F) rinse has been shown to increase oral F levels. We tested the anticaries effect of this combination in a dose-response in situ caries model. In a double-blind, crossover experiment, 10 volunteers carried enamel slabs in palatal appliances for 14 days, during which they rinsed twice/day with one of four rinse combinations: (1) a placebo prerinse (150 mM sodium lactate) followed by a distilled water rinse (negative control); (2) a placebo prerinse followed by a 250 ppm F rinse; (3) a placebo prerinse followed by a 1,000 ppm F rinse, or (4) a Ca prerinse (150 mM Ca, as calcium lactate) followed by a 250 ppm F rinse.
View Article and Find Full Text PDFIncreasing the concentration of free fluoride in oral fluids is an important goal in the use of topical fluoride agents. Although sodium lauryl sulfate (SLS) is a common dentifrice ingredient, the influence of this ion on plaque fluid and salivary fluid fluoride has not been examined. The purpose of this study was to investigate the effect of SLS on these parameters and to examine the effect of this ion on total (or whole) plaque fluoride, an important source of plaque fluid fluoride after a sufficient interval following fluoride administration, and on total salivary fluoride, a parameter often used as a surrogate measure of salivary fluid fluoride.
View Article and Find Full Text PDFBackground: Previous studies have shown that a calcium (Ca) pre-rinse given before a 228 ppm fluoride (F) rinse greatly increased salivary fluoride. Objectives. The aim of this randomized controlled trial is to examine if Ca pre-rinse could increase the fluoride concentration in the overnight unstimulated saliva after a 905 ppm F-rinse.
View Article and Find Full Text PDFCurrent models for increasing the anti-caries effects of fluoride (F) agents emphasize the importance of maintaining a cariostatic concentration of F in oral fluids. The concentration of F in oral fluids is maintained by the release of this ion from bioavailable reservoirs on the teeth, oral mucosa and - most importantly, because of its association with the caries process - dental plaque. Oral F reservoirs appear to be of two types: (1) mineral reservoirs, in particular calcium fluoride or phosphate-contaminated 'calcium-fluoride-like' deposits; (2) biological reservoirs, in particular (with regard to dental plaque) F held to bacteria or bacterial fragments via calcium-fluoride bonds.
View Article and Find Full Text PDF