Introduction: Pinhole intraocular lenses (IOLs) were developed to improve reading by compensating for loss of accommodative function. The IC-8 Apthera™ is a small-aperture presbyopia-correcting IOL that combines the proven principle of small-aperture optics with an aspheric monofocal lens to deliver a continuous range of vision for patients with cataracts from distance to near vision. Posterior capsule opacification is the most common sequela after cataract surgery.
View Article and Find Full Text PDFTailoring vacancies is a feasible way to improve the mechanical properties of ceramics. However, high concentrations of vacancies usually compromise the strength (or hardness). We show that a high elasticity and flexural strength could be achieved simultaneously using a nitride superlattice architecture with disordered anion vacancies up to 50%.
View Article and Find Full Text PDFElectron-induced fragmentation of the HFeCo(CO) precursor allows direct-write fabrication of 3D nanostructures with metallic contents of up to >95 at %. While microstructure and composition determine the physical and functional properties of focused electron beam-induced deposits, they also provide fundamental insights into the decomposition process of precursors, as elaborated in this study based on EDX and TEM. The results provide solid information suggesting that different dominant fragmentation channels are active in single-spot growth processes for pillar formation.
View Article and Find Full Text PDFThe aim of this study was the preparation of different amorphous silicon-carbon hybrid thin-layer materials according to the liquid phase deposition (LPD) process using single-source precursors. In our study, 2-methyl-2-silyltrisilane (methylisotetrasilane; ), 1,1,1-trimethyl-2,2-disilyltrisilane (trimethylsilylisotetrasilane; ), 2-phenyl-2-silyltrisilane (phenylisotetrasilane; ), and 1,1,2,2,4,4,5,5-octamethyl-3,3,6,6-tetrasilylcyclohexasilane (cyclohexasilane; ) were utilized as precursor materials and compared with the parent compound 2,2-disilyltrisilane (neopentasilane; ). Compounds - were successfully oligomerized at λ = 365 nm with catalytic amounts of the neopentasilane oligomer ().
View Article and Find Full Text PDFThe charging of nanoporous carbon via electrodeposition of solid iodine from iodide-based electrolyte is an efficient and ecofriendly method to produce battery cathodes. Here, the interactions at the carbon/iodine interface from first contact with the aqueous electrolyte to the electrochemical polarization conditions in a hybrid cell are investigated by a combination of in situ and ex situ methods. EQCM investigations confirm the flushing out of water from the pores during iodine formation at the positive electrode.
View Article and Find Full Text PDFEven though hydrogen-metal surface interactions play an important role in energy technologies and metal corrosion, a thorough understanding of these interactions at the nanoscale remains elusive due to obstructive detection limits in instrumentation and the volatility of pure hydrogen. In the present paper we use analytical spectroscopy in TEM to show that hydrogen adsorbs directly at the (0001) surfaces of hexagonal helium bubbles within neutron irradiated beryllium. In addition to hydrogen, we also found Al, Si and Mg at the beryllium-bubble interfaces.
View Article and Find Full Text PDFMagnetic force microscopy (MFM) is a powerful extension of atomic force microscopy (AFM), which mostly uses nano-probes with functional coatings for studying magnetic surface features. Although well established, additional layers inherently increase apex radii, which reduce lateral resolution and also contain the risk of delamination, rendering such nano-probes doubtful or even useless. To overcome these limitations, we now introduce the additive direct-write fabrication of magnetic nano-cones via focused electron beam-induced deposition (FEBID) using an HCoFe(CO) precursor.
View Article and Find Full Text PDFWe theoretically investigate the tomographic reconstruction of the three-dimensional photonic environment of nanoparticles. As input for our reconstruction we use electron energy loss spectroscopy (EELS) maps for different rotation angles. We perform the tomographic reconstruction of surface polariton fields for smooth and rough nanorods and compare the reconstructed and simulated photonic local density of states, which are shown to be in very good agreement.
View Article and Find Full Text PDFThe passivity of aluminum is detrimental to its performance as an anode in batteries. Soaking of native oxide-covered aluminum in a chloroaluminate deep eutectic solvent gradually activates the electrode surface, which is reflected in a continuously decreasing open circuit potential. The underlying processes were studied by analyzing the 3 to 7 nm thick layer of native oxide after increasing periods of soaking with secondary neutral mass spectrometry, X-ray photoelectron spectroscopy, and energy-dispersive spectroscopy in a transmission electron microscope.
View Article and Find Full Text PDF3D nanoprinting via focused electron beam induced deposition (FEBID) is applied for fabrication of all-metal nanoprobes for atomic force microscopy (AFM)-based electrical operation modes. The 3D tip concept is based on a hollow-cone (HC) design, with all-metal material properties and apex radii in the sub-10 nm regime to allow for high-resolution imaging during morphological imaging, conductive AFM (CAFM) and electrostatic force microscopy (EFM). The study starts with design aspects to motivate the proposed HC architecture, followed by detailed fabrication characterization to identify and optimize FEBID process parameters.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2022
Focused electron beam induced deposition (FEBID) is one of the few additive, direct-write manufacturing techniques capable of depositing complex 3D nanostructures. In this work, we explore post-growth electron beam curing (EBC) of such platinum-based FEBID deposits, where free-standing, sheet-like elements were deformed in a targeted manner by local irradiation without precursor gas present. This process diminishes the volumes of exposed regions and alters nano-grain sizes, which was comprehensively characterized by SEM, TEM and AFM and complemented by Monte Carlo simulations.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
May 2022
In BiFeO (BFO), BiO (BO) is a known secondary phase, which can appear under certain growth conditions. However, BO is not just an unwanted parasitic phase but can be used to create the super-tetragonal BFO phase in films on substrates, which would otherwise grow in the regular rhombohedral phase (R-phase). The super-tetragonal BFO phase has the advantage of a much larger ferroelectric polarization of 130-150 μC/cm, which is around 1.
View Article and Find Full Text PDFTo identify different types of precipitates and their composition, analytical electron tomography analysis on a needle-shaped sample was performed. Three-dimensional chemical maps from each element in a high alloyed steel are acquired and the resulting elemental maps are jointly reconstructed. Since analytical electron tomography data suffers from noise, total generalized variation regularization is used to improve the reconstruction quality compared to conventional reconstruction techniques.
View Article and Find Full Text PDFHigh-resolution STEM-EELS provides information about the composition of crystalline materials at the atomic scale, though a reliable quantitative chemical analysis is often hampered by zone axis conditions, where neighbouring atomic column intensities contribute to the signal at the probe position. In this work, we present a procedure to determine the concentration of two elements within equivalent atomic columns from EELS elemental maps - in our case barium and lanthanum within the A-sites of BaLaFeO, a second order Ruddlesden-Popper phase. We took advantage of the large changes in the elemental distribution from column to column and introduced a technique, which substitutes inelastic scattering cross sections during the quantification step by using parameters obtained from the actual experiment.
View Article and Find Full Text PDFPowder and selective laser melting (SLM) additively manufactured parts of X5CrNiCuNb17-4 maraging steel were systematically investigated by electron microscopy to understand the relationship between the properties of the powder grains and the microstructure of the printed parts. We prove that satellites, irregularities and superficial oxidation of powder particles can be transformed into an advantage through the formation of nanoscale (AlMnSiTiCr) oxides in the matrix during the printing process. The nano-oxides showed extensive stability in terms of size, spherical morphology, chemical composition and crystallographic disorder upon in situ heating in the scanning transmission electron microscope up to 950 °C.
View Article and Find Full Text PDFPrecipitation hardened and tempered martensitic-ferritic steels (TMFSs) are used in many areas of our daily lives as tools, components in power generation industries, or in the oil and gas (O&G) industry for creep and corrosion resistance. In addition to the metallurgical and forging processes, the unique properties of the materials in service are determined by the quality heat treatment (HT). By performing a quenching and partitioning HT during an in situ high energy synchrotron radiation experiment in a dilatometer, the evolution of retained austenite, martensite laths, dislocations, and carbides was characterized in detail.
View Article and Find Full Text PDFHigh-fidelity 3D printing of nanoscale objects is an increasing relevant but challenging task. Among the few fabrication techniques, focused electron beam induced deposition (FEBID) has demonstrated its high potential due to its direct-write character, nanoscale capabilities in 3D space and a very high design flexibility. A limitation, however, is the low fabrication speed, which often restricts 3D-FEBID for the fabrication of single objects.
View Article and Find Full Text PDFSurface phonon polaritons (SPhPs) are coupled photon-phonon excitations that emerge at the surfaces of nanostructured materials. Although they strongly influence the optical and thermal behavior of nanomaterials, no technique has been able to reveal the complete three-dimensional (3D) vectorial picture of their electromagnetic density of states. Using a highly monochromated electron beam in a scanning transmission electron microscope, we could visualize varying SPhP signatures from nanoscale MgO cubes as a function of the beam position, energy loss, and tilt angle.
View Article and Find Full Text PDFMicromachines (Basel)
January 2021
Additive, direct-write manufacturing via a focused electron beam has evolved into a reliable 3D nanoprinting technology in recent years. Aside from low demands on substrate materials and surface morphologies, this technology allows the fabrication of freestanding, 3D architectures with feature sizes down to the sub-20 nm range. While indispensably needed for some concepts (e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
The direct-write fabrication of freestanding nanoantennas for plasmonic applications is a challenging task, as demands for overall morphologies, nanoscale features, and material qualities are very high. Within the small pool of capable technologies, three-dimensional (3D) nanoprinting via focused electron beam-induced deposition (FEBID) is a promising candidate due to its design flexibility. As FEBID materials notoriously suffer from high carbon contents, the chemical postgrowth transfer into pure metals is indispensably needed, which can severely harm or even destroy FEBID-based 3D nanoarchitectures.
View Article and Find Full Text PDFElectron energy-loss spectroscopy (EELS) is a powerful tool for imaging chemical variations at the nanoscale. Here, we investigate a polymer/organic small molecule-blend used as absorber layer in an organic solar cell and employ EELS for distinguishing polymer donor and small molecule acceptor domains in the nanostructured blend based on elemental maps of light elements, such as nitrogen, sulfur or fluorine. Especially for beam sensitive samples, the electron dose needs to be limited, therefore optimized acquisition and data processing strategies are required.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe sodium tungsten bronzes (NaWO) are sub-stoichiometric metal oxides with variable Na content described by x. Methods to determine the overall x of a sample are well-known, but variations of composition within a particle have not yet been explored. In this work, electron microscopy techniques are used to determine the crystallinity and chemical composition of individual NaWO nanocubes.
View Article and Find Full Text PDFAqueous iodine based electrochemical energy storage is considered a potential candidate to improve sustainability and performance of current battery and supercapacitor technology. It harnesses the redox activity of iodide, iodine, and polyiodide species in the confined geometry of nanoporous carbon electrodes. However, current descriptions of the electrochemical reaction mechanism to interconvert these species are elusive.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
August 2020
Cubic LiLaZrO(LLZO), stabilized by supervalent cations, is one of the most promising oxide electrolyte to realize inherently safe all-solid-state batteries. It is of great interest to evaluate the strategy of supervalent stabilization in similar compounds and to describe its effect on ionic bulk conductivity σ'. Here, we synthesized solid solutions of Li LaM Ta O with M = Hf, Sn over the full compositional range ( = 0, 0.
View Article and Find Full Text PDF