Cancer Treat Res Commun
February 2022
The T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains (TIGIT) is a validated immune checkpoint protein expressed on memory CD4T-cellls, Tregs, CD8T-cell and natural killer (NK) cells. ASP8374 is a fully human monoclonal immunoglobulin (Ig) G4 antibody designed to block the interaction of TIGIT with its ligands and inhibit TIGIT signaling. ASP8374 exhibited high affinity binding to TIGIT and increased interferon (IFN)-γ production of cultured peripheral blood mononuclear cells (PBMCs) in a titratable manner.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a fatal progressive neurodegenerative disorder characterized by increasing loss in memory, cognition, and function of daily living. Among the many pathologic events observed in the progression of AD, changes in amyloid β peptide (Aβ) metabolism proceed fastest, and precede clinical symptoms. BACE1 (β-secretase 1) catalyzes the initial cleavage of the amyloid precursor protein to generate Aβ.
View Article and Find Full Text PDFWe describe structure-based design, synthesis, and biological evaluation of a series of novel inhibitors bearing a pyrazole (compounds 3a-h) or a thiazole moiety (compounds 4a-e) as the P3 ligand. We have also explored Boc-β-amino-l-alanine as a novel P2 ligand. A number of inhibitors have displayed β-secretase inhibitory potency.
View Article and Find Full Text PDFAlzheimer disease is intimately linked to an excess amount of amyloid-β (Aβ) in the brain. Thus, therapeutic inhibition of Aβ production is an attractive clinical approach to treat this disease. Here we provide the first direct experimental evidence that the treatment of Tg2576 transgenic mice with an inhibitor of β-secretase, GRL-8234, rescues the age-related cognitive decline.
View Article and Find Full Text PDFStructure-based design, synthesis, and biological evaluation of a series of peptidomimetic beta-secretase inhibitors incorporating hydroxyethylamine isosteres are described. We have identified inhibitor 24 which has shown exceedingly potent activity in memapsin 2 enzyme inhibitory (K(i) 1.8 nM) and cellular (IC(50)=1 nM in Chinese hamster ovary cells) assays.
View Article and Find Full Text PDFCurr Alzheimer Res
September 2007
A major strategy for the development of a disease-modifying therapy against Alzheimer's disease is pharmacological intervention designed to reduce levels of beta-amyloid in the brain. Among various ways of reducing beta-amyloid production, the inhibition of beta-secretase (memapsin 2, BACE) is particularly attractive. Not only does beta-secretase initiates the amyloid cascade, it also is an aspartic protease, a class of proteases for which successful inhibitor drugs have been developed to treat AIDS patients.
View Article and Find Full Text PDFStructure-based design and synthesis of a number of potent and selective memapsin 2 inhibitors are described. These inhibitors were designed based upon the X-ray structure of memapsin 2-bound inhibitor 3 that incorporates methylsulfonyl alanine as the P2-ligand and a substituted pyrazole as the P3-ligand. Of particular importance, we examined the ability of the substituted isophthalic acid amide derivative to mimic the key interactions in the S2-S3 regions of the enzyme active sites of 3-bound memapsin 2.
View Article and Find Full Text PDFStructure-based design, synthesis, and X-ray structure of protein-ligand complexes of memapsin 2 are described. The inhibitors are designed specifically to interact with S2- and S3-active site residues to provide selectivity over memapsin 1 and cathepsin D. Inhibitor 6 has exhibited exceedingly potent inhibitory activity against memapsin 2 and selectivity over memapsin 1 (>3800-fold) and cathepsin D (>2500-fold).
View Article and Find Full Text PDFMemapsin 2 (beta-secretase) is the membrane-anchored aspartic protease that initiates the cleavage of beta-amyloid precursor protein (APP), leading to the production of amyloid-beta (Abeta), a major factor in the pathogenesis of Alzheimer's disease. The active site of memapsin 2 has been shown, with kinetic data and crystal structures, to bind to eight substrate residues (P(4)-P(4)'). We describe here that the addition of three substrate residues from P(7) to P(5) strongly influences the hydrolytic activity by memapsin 2 and these subsites prefer hydrophobic residues, especially tryptophan.
View Article and Find Full Text PDFA series of novel macrocyclic amide-urethanes was designed and synthesized based upon the X-ray crystal structure of our lead inhibitor (1, OM99-2 with eight residues) bound to memapsin 2. Ring size and substituent effects have been investigated. Cycloamide-urethanes containing 14- to 16-membered rings exhibited low nanomolar inhibitory potencies against human brain memapsin 2 (beta-secretase).
View Article and Find Full Text PDFMemapsin 2 (beta-secretase) is the protease that initiates cleavage of amyloid precursor protein (APP) leading to the production of amyloid-beta (Abeta) peptide and the onset of Alzheimer's disease. Both APP and memapsin 2 are Type I transmembrane proteins and are endocytosed into endosomes where APP is cleaved by memapsin 2. Separate endocytic signals are located in the cytosolic domains of these proteins.
View Article and Find Full Text PDFWe have previously reported structure-based design of memapsin 2 (beta-secretase) inhibitors with high potency. Here we show that two such inhibitors covalently linked to a "carrier peptide" penetrated the plasma membrane in cultured cells and inhibited the production of beta-amyloid (Abeta). Intraperitoneal injection of the conjugated inhibitors in transgenic Alzheimer's mice (Tg2576) resulted in a significant decrease of Abeta level in the plasma and brain.
View Article and Find Full Text PDFMempasin 2, a beta-secretase, is the membrane-anchored aspartic protease that initiates the cleavage of amyloid precursor protein leading to the production of beta-amyloid and the onset of Alzheimer's disease. Thus memapsin 2 is a major therapeutic target for the development of inhibitor drugs for the disease. Many biochemical tools, such as the specificity and crystal structure, have been established and have led to the design of potent and relatively small transition-state inhibitors.
View Article and Find Full Text PDFMemapsin 2 (beta-secretase) is a membrane-associated aspartic protease that initiates the hydrolysis of beta-amyloid precursor protein (APP) leading to the production of amyloid-beta and the onset of Alzheimer's disease (AD). Both memapsin 2 and APP are transported from the cell surface to endosomes where APP hydrolysis takes place. Thus, the intracellular transport mechanism of memapsin 2 is important for understanding the pathogenesis of AD.
View Article and Find Full Text PDFThe discovery that beta-secretase is a membrane-anchored aspartic protease memapsin 2 has stimulated much interest in the design and testing of its inhibitors for the treatment of Alzheimer's disease. This article discusses the strategy for the development of such inhibitor drugs. Enzymology and structural determination tools have permitted the design of memapsin 2 inhibitors with high potency and in a size range possible for penetration of the blood-brain barrier.
View Article and Find Full Text PDFThe structure of the catalytic domain of human memapsin 2 bound to an inhibitor OM00-3 (Glu-Leu-Asp-LeuAla-Val-Glu-Phe, K(i) = 0.3 nM, the asterisk denotes the hydroxyethylene transition-state isostere) has been determined at 2.1 A resolution.
View Article and Find Full Text PDFMemapsin 2, or beta-secretase, is a membrane-anchored aspartic protease that initiates the cleavage of beta-amyloid precursor protein (APP) leading to the production of beta-amyloid peptide in the brain and the onset of Alzheimer's disease. Memapsin 2 and APP are both endocytosed into endosomes for cleavage. Here we show that the cytosolic domain of memapsin 2, but not that of memapsin 1, binds the VHS domains of GGA1 and GGA2.
View Article and Find Full Text PDFMemapsin 1 is closely homologous to memapsin 2 (BACE), or beta-secretase, whose action on beta-amyloid precursor protein (APP) leads to the production of beta-amyloid (A beta) peptide and the progression of Alzheimer's disease. Memapsin 2 is a current target for the development of inhibitor drugs to treat Alzheimer's disease. Although memapsin 1 hydrolyzes the beta-secretase site of APP, it is not significantly present in the brain, and no direct evidence links it to Alzheimer's disease.
View Article and Find Full Text PDFChronic accumulation of beta-amyloid in the brain has been shown to result in complex molecular and cellular changes that accompany neurodegeneration in Alzheimer's disease (AD). In this study, we examined the expression of a newly identified beta-secretase, memapsin 2 (M2) or beta-site APP cleaving enzyme in deparaffinized sections from 10 AD patients and 10 aged matched controls and in frozen samples of parietal cortex from 11 AD and 8 controls. M2 is mainly expressed in neurons, with high levels in CA4 to CA2 regions and transentorhinal cortex and low or intermediate levels in CA1, subiculum, and granule cells of the dentate gyrus.
View Article and Find Full Text PDF