For the first time, we report calorimetric measurements of intrusion of aqueous LiCl solutions in a hydrophobic pure siliceous MFI zeolite (silicalite-1) under high pressure. Our results show that the intrusion heats are strongly dependent on the LiCl concentration. The intrusion process is endothermic for diluted solutions (molar HO/LiCl = 12) as well as for water, but it becomes exothermic for a concentration close to saturation (molar HO/LiCl = 4).
View Article and Find Full Text PDFThe employment of metal-organic frameworks in powder form is undesirable from an industrial perspective due to process and safety issues. This work is devoted to evaluating the impact of compression on the textural and structural properties of CPO-27(Ni). For this purpose, CPO-27(Ni) was synthesized under hydrosolvothermal conditions and characterized.
View Article and Find Full Text PDFThe syntheses and characterization of a series of functionalized MIL-53(In) solids have been reported. Chemical groups with variations in steric hindrance and chemical nature (-(OH), -Br or -NO groups) were introduced through the terephthalate linker to modify the pore surface. Single crystal X-ray diffraction data, N adsorption-desorption isotherms, and infrared spectra were systematically investigated to explore the impact of the functional groups grafted onto the organic linker on the dynamic behaviour of these highly flexible hybrid porous frameworks.
View Article and Find Full Text PDFThis work aims to highlight the promising adsorption capacity and kinetic of (poly)chlorobenzene pollutants in the hybrid MIL-101(Cr) type material for technological uses in industrial waste exhaust decontamination. The influence of the MIL-101(Cr) crystal size (nano- and microcrystals) on the adsorption behavior was studied in static and dynamic modes. For this purpose, crystals of MIL-101(Cr) in nano- and micrometric sizes were synthesized and fully characterized.
View Article and Find Full Text PDFThe energetic performances of seven SOD or RHO-topology ZIFs, with zinc or cobalt metal cation (ZIF-8, ZIF-90, Zn(dcim)2-SALE, ZIF-67, ZIF-7, ZIF-71, ZIF-11) were evaluated using water intrusion-extrusion under high pressure. The relationship between the structural parameters (in particular the pore system SOD or RHO, the type of linker, the metal cation nature) and the intrusion pressure was studied to better understand the mechanism of water intrusion and the energetic behaviour for a given ZIF crystal type. "ZIF-8-water", "ZIF-67-water" and "ZIF-71-water" systems display a shock-absorber behaviour.
View Article and Find Full Text PDFThe "ZIF-8-water" system displays reproducible shock-absorber behaviour over several cycles with a stored energy of 13.3 J g(-1) and an energy yield close to 85%. The combination of the main features evidenced for ZIF-8, i.
View Article and Find Full Text PDFThe objective of this work was to study the adsorption and separation of the most important families of hydrocarbon compounds on metal-organic frameworks (MOFs), in comparison with zeolites. For this purpose, we have selected four probe molecules, each of them representing one of these families, i.e.
View Article and Find Full Text PDFExperimental measurements and molecular simulations were conducted for two zeolitic imidazolate frameworks, ZIF-8 and ZIF-76. The transferability of the force field was tested by comparing molecular simulation results of gas adsorption with experimental data available in the literature for other ZIF materials (ZIF-69). Owing to the good agreement observed between simulation and experimental data, the simulation results can be used to identify preferential adsorption sites, which are located close to the organic linkers.
View Article and Find Full Text PDFFive metal-organic frameworks (MOFs) based on the same three-dimensional gallium terephthalate network (IM-19) are described, and an incommensurate structure (for the as-synthesized form) as well as two remarkable guest-free polymorphs (open and closed) are highlighted.
View Article and Find Full Text PDFFor the first time the synthesis of a porous gallium nitride material (GaN1.15H1.18O0.
View Article and Find Full Text PDF