Assessments of airways inflammation in patients with chronic obstructive pulmonary disease (COPD) require semi-invasive procedures and specialized sample processing know-how. In this study we aimed to set up and validate a novel non-invasive processing-free method for RNA sequencing (RNAseq) of spontaneous sputum samples collected from COPD patients. Spontaneous sputum samples were collected and stabilized, with or without selection of plugs and with or without the use of a stabilizer specifically formulated for downstream diagnostic testing (PrimeStore® Molecular Transport Medium).
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) patients with higher eosinophil counts are associated with increased clinical response to phosphodiesterase-4-inhibitors (PDE4i). However, the underlying inflammatory mechanisms associated with this increased response is not yet elucidated. This post hoc analysis focused on sputum gene expression in patients with chronic bronchitis who underwent 32-day treatment with two doses of the inhaled PDE4i CHF6001 (tanimilast) or placebo on top of triple therapy.
View Article and Find Full Text PDFBackground: Although phosphodiesterase-4 (PDE4) inhibitors have been shown to reduce COPD exacerbation rate, their biological mechanism of action is not completely elucidated at the molecular level. We aimed to characterise the whole genome gene expression profile of the inhaled PDE4-inhibitor CHF6001 on top of triple therapy in sputum cells and whole blood of patients with COPD and chronic bronchitis.
Methods: Whole genome gene expression analysis was carried out by microarray in 54 patients before and after 32 days treatment with CHF6001 800 and 1600 μg and placebo twice daily (BID) in a randomised crossover study.
Heart disease and related sequelae are a leading cause of death and healthcare expenditure throughout the world. Although many patients opt for surgical interventions, lifestyle modification programs focusing on nutrition and exercise have shown substantial health benefits and are becoming increasing popular. We conducted a year-long lifestyle modification program to mediate cardiovascular risk through traditional risk factors and to investigate how molecular changes, if present, may contribute to long-term risk reduction.
View Article and Find Full Text PDFObjective: To examine relationships between weight loss through changes in lifestyle and peripheral blood gene expression profiles.
Methods: A prospective nonrandomized trial was conducted over 1 year in participants undergoing intensive lifestyle modification to reverse or stabilize progression of coronary artery disease. Cardiovascular risk factors, inflammatory biomarkers, and gene expression as a function of weight loss were assessed in 89 lifestyle participants and 71 retrospectively matched controls undergoing usual care.
Background: Healthy lifestyle changes are thought to mediate cardiovascular disease risk through pathways affecting endothelial function and progression of atherosclerosis; however, the extent, persistence, and clinical significance of molecular change during lifestyle modification are not well known. We examined the effect of a rigorous cardiovascular disease risk reduction program on peripheral blood gene expression profiles in 63 participants and 63 matched controls to characterize molecular responses and identify regulatory pathways important to cardiovascular health.
Methods And Results: Dramatic changes in dietary fat intake (-61%; P<0.
Metformin may reduce the incidence of breast cancer and enhance response to neoadjuvant chemotherapy in diabetic women. This trial examined the effects of metformin on Ki67 and gene expression in primary breast cancer. Non-diabetic women with operable invasive breast cancer received pre-operative metformin.
View Article and Find Full Text PDFDespite the fact that phosphoenolpyruvate carboxylase (PEPC) activity has been measured and in some cases even purified from some Archaea, the gene responsible for this activity has not been elucidated. Using sensitive sequence comparison methods, we detected a highly conserved, uncharacterized archaeal gene family that is distantly related to the catalytic core of the canonical PEPC. To verify the predicted function of this archaeal gene family, we cloned a representative from the hyperthermophilic acidophile Sulfolobus solfataricus and functionally produced the corresponding enzyme as a fusion with the Escherichia coli maltose-binding protein.
View Article and Find Full Text PDF