Publications by authors named "Geqian Fang"

The effective conversion of methane to a mixture of more valuable hydrocarbons and hydrogen under mild conditions is a significant scientific and practical challenge. Here, we synthesized Zn-containing nanosized MFI zeolite for direct oxidation of methane in the presence of HO and air. The presence of the surface hydroxyl groups on nanosized MFI-type zeolite and their significant reduction in the Zn-containing nanosized MFI zeolite were confirmed with Infrared Fourier Transform (FTIR) spectroscopy.

View Article and Find Full Text PDF

The efficient utilization of methane, a vital component of natural gas, shale gas and methane hydrate, holds significant importance for global energy security and environmental sustainability. However, converting methane into value-added oxygenates presents a formidable challenge due to its inert nature. Direct selective oxidation of methane (DSOM) under mild conditions is essential for reducing energy consumption and carbon emissions compared with traditional indirect routes.

View Article and Find Full Text PDF

Direct selective oxidation of methane (DSOM) to high value-added oxygenates under mild conditions is attracting considerable interest. Although state-of-the-art supported metal catalysts can improve methane conversion, it is still challenging to avoid the deep oxidation of oxygenates. Here, we develop a highly efficient metal-organic frameworks (MOFs)-supported single-atom Ru catalyst (Ru/UiO-66) for the DSOM reaction using HO as an oxidant.

View Article and Find Full Text PDF

Direct conversion of methane to high value-added oxygenates under mild conditions has attracted extensive interest. However, the over-oxidation of target products is usually unavoidable due to the easily excessive activation of C-H bond on the sites of supported metal species. Here, we identified the most efficient Zr-oxo nodes of UiO-66 metal-organic frameworks (MOFs) catalysts for the selective oxidation of methane with H O .

View Article and Find Full Text PDF

Supported metal catalysts play a significant role in heterogeneous catalysis in liquid phase reaction systems, but they usually suffer from a stability problem. Encapsulation of active metal species without the compromise of catalytic performance has been considered as an effective strategy. Here, we report an ultrastable Ru-based catalyst with particle size of around 1.

View Article and Find Full Text PDF

Because n-butanol as a fuel additive has more advantageous physicochemical properties than those of ethanol, ethanol valorization to n-butanol through homo- or heterogeneous catalysis has received much attention in recent decades in both scientific and industrial fields. Recent progress in catalyst development for upgrading ethanol to n-butanol, which involves homogeneous catalysts, such as iridium and ruthenium complexes, and heterogeneous catalysts, including metal oxides, hydroxyapatite (HAP), and, in particular, supported metal catalysts, is reviewed herein. The structure-activity relationships of catalysts and underlying reaction mechanisms are critically examined, and future research directions on the design and improvement of catalysts are also proposed.

View Article and Find Full Text PDF