Publications by authors named "Georgy Grancharov"

Novel fibrous cellulosic substrates impregnated with meta-polybenzimidazole (PBI)-stabilized carbon nanotubes/zinc oxide with different weight content of ZnO and with the use of dimethylacetamide as dispersant media. The pristine ZnO nanoparticle powder was prepared by plant extract-mediated synthesis using L. The green synthesized ZnO possesses an average crystallite size of 15 nm.

View Article and Find Full Text PDF

Cannabidiol (CBD) is a natural terpenophenolic compound with known pharmacological activities, but the poor solubility of CBD in water limits its widespread use in medicine and pharmacy. Polymeric (nano)carriers demonstrated high potential for enhancing the solubility and therapeutic activity of lipophilic drugs such as CBD. Here, we report the elaboration of a novel hydroxypropyl cellulose (HPC)-based in situ gelling formulation for controlled delivery of CBD.

View Article and Find Full Text PDF

In this study, as a product from the efficient Achmatowicz rearrangement and mild subsequent hydrogenation-reduction reactions of biorenewable C5 alcohols derived from lignocellulose, pentane-1,2,5-triol was successfully used after oxypropylation in the preparation of rigid polyurethane foams-one of the most important classes of polymeric materials. Despite the broad range of applications, the production of polyurethanes is still highly dependent on petrochemical materials considering the need of renewable raw materials and new process technologies for the production of polyol or isocyanate components as a key point for the sustainable development of polyurethane foams. The synthesized oxypropylated pentane-1,2,5-triol was analyzed using proton NMR spectroscopy, hydroxyl number, and viscosity, whereas the newly obtained foams incorporated with up to 30% biorenewable polyol were characterized using compressive stress, thermogravimetry, dynamic mechanical analysis, and scanning electron microscopy.

View Article and Find Full Text PDF

Polymer micelles represent one of the most attractive drug delivery systems due to their design flexibility based on a variety of macromolecular synthetic methods. The environmentally safe chemistry in which the use or generation of hazardous materials is minimized has an increasing impact on polymer-based drug delivery nanosystems. In this work, a solvent-free green synthetic procedure was applied for the preparation of an amphiphilic diblock copolymer consisting of biodegradable hydrophobic poly(acetylene-functional carbonate) and biocompatible hydrophilic polyethylene glycol (PEG) blocks.

View Article and Find Full Text PDF

The use of biodegradable polyesters derived from green sources and their combination with natural abundantly layered aluminosilicate clay, e.g., natural montmorillonite, meets the requirements for the development of new sustainable, disposable, and biodegradable organic dye sorbent materials.

View Article and Find Full Text PDF

The discovery of new anticancer drugs with а higher, more specific activity and diminished side effects than the conventional chemotherapeutic agents is a tremendous challenge to contemporary medical research and development. To achieve a pronounced efficacy, the design of antitumor agents can combine various biologically active subunits in one molecule, which can affect different regulatory pathways in cancer cells. We recently demonstrated that a newly synthesized organometallic compound, a ferrocene-containing camphor sulfonamide (DK164), possesses promising antiproliferative activity against breast and lung cancer cells.

View Article and Find Full Text PDF

We report the elaboration of redox-responsive functional micellar nanocarriers designed for triggered release of caffeic acid phenethyl ester (CAPE) in cancer therapy. Three-layered micelles, comprising a poly(ε-caprolactone) (PCL) core, a middle poly(acrylic acid)/poly(ethylene oxide) (PAA/PEO) layer and a PEO outer corona, were prepared by co-assembly of PEO--PCL--PEO and PAA--PCL--PAA amphiphilic triblock copolymers in aqueous media. The preformed micelles were loaded with CAPE via hydrophobic interactions between the drug molecules and PCL core, and subsequently crosslinked by reaction of carboxyl groups from PAA and a disulfide crosslinking agent.

View Article and Find Full Text PDF

In this study, some crucial parameters were determined of flexible polymer-organic solar cells prepared from an active layer blend of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C-butyric acid methyl ester (PCBM) mixed in 1:1 mass ratio and deposited from chlorobenzene solution by spin-coating on poly(ethylene terephthalate) (PET)/ITO substrates. Additionally, the positive effect of an electron transport layer (ETL) prepared from zinc oxide nanoparticles (ZnO np) on flexible photovoltaic elements' performance and stability was investigated. Test devices with above normal architecture and silver back electrodes deposed by magnetron sputtering were constructed under environmental conditions.

View Article and Find Full Text PDF

Targeting tumor cell mitochondria is a prospective strategy for highly effective anticancer therapy. Consequently, the development of potent systems for the targeted delivery of mitochondria-acting therapeutics to mitochondria has the potential to boost this sector of nanomedicine. In this study, a functional mixed micellar system based on two co-assembled triblock copolymers, poly(2-(dimethylamino)ethyl methacrylate)-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) bearing triphenylphosphonium ligands (PDMAEMA(TPP+)20-b-PCL70-b-PDMAEMA(TPP+)20) and poly(ethylene oxide)-b-poly(ε-caprolactone)-b-poly(ethylene oxide) (PEO113-b-PCL70-b-PEO113), was assessed for the mitochondria targeted delivery of curcumin.

View Article and Find Full Text PDF

Four, individually addressable 30 microm diameter, e-beam deposited, gold microelectrodes recessed by 6 microm were suitably spaced on a single substrate to avoid diffusional overlap between each microelectrode. The single substrate device was functionalised with thiolated alpha-, beta-, and gamma-cyclodextrin nanocavities without spacer groups to ensure close proximity of the cavities to the electrode surface. The microelectrodes were assessed in two stages.

View Article and Find Full Text PDF