Background: Currently, synthetic genomics is a rapidly developing field. Its main tasks, such as the design of synthetic sequences and the assembly of DNA sequences from synthetic oligonucleotides, require specialized software. In this article, we present a program with a graphical interface that allows non-bioinformatics to perform the tasks needed in synthetic genomics.
View Article and Find Full Text PDFThe development of approaches to the design of two- and three-dimensional self-assembled DNA-based nanostructures with a controlled shape and size is an essential task for applied nanotechnology, therapy, biosensing, and bioimaging. We conducted a comprehensive study on the formation of various complexes from a pair of oligonucleotides with two transposed complementary blocks that can be linked through a nucleotide or non-nucleotide linker. A methodology is proposed to prove the formation of a self-limited complex and to determine its molecularity.
View Article and Find Full Text PDFLoop-mediated isothermal amplification (LAMP) is a method of nucleic acid amplification that is more stable and resistant to DNA amplification inhibitors than conventional PCR. LAMP multiplexing with reverse transcription allows for the single-tube amplification of several RNA fragments, including an internal control sample, which provides the option of controlling all analytical steps. We developed a method of SARS-CoV-2 viral RNA detection based on multiplex reverse-transcription LAMP, with single-tube qualitative analysis of SARS-CoV-2 RNA and MS2 phage used as a control RNA.
View Article and Find Full Text PDFNucleic acid-based influenza vaccines are a promising platform that have recently and rapidly developed. We previously demonstrated the immunogenicity of DNA vaccines encoding artificial immunogens AgH1, AgH3, and AgM2, which contained conserved fragments of the hemagglutinin stem of two subtypes of influenza A-H1N1 and H3N2-and conserved protein M2. Thus, the aim of this study was to design and characterize modified mRNA obtained using the above plasmid DNA vaccines as a template.
View Article and Find Full Text PDFEndothelization of the luminal surface of vascular grafts is required for their long-term functioning. Here, we have cultivated human endothelial cells (HUVEC) on different 3D matrices to assess cell proliferation, gene expression and select the best substrate for endothelization. 3D matrices were produced by electrospinning from solutions of poly(D,L-lactide-co-glycolide) (PLGA), polycaprolactone (PCL), and blends of PCL with gelatin (Gl) in hexafluoroisopropanol.
View Article and Find Full Text PDFA DNA molecule is under continuous influence of endogenous and exogenous damaging factors, which produce a variety of DNA lesions. Apurinic/apyrimidinic sites (abasic or AP sites) are among the most common DNA lesions. In this work, we applied pulse dipolar electron paramagnetic resonance (EPR) spectroscopy in combination with molecular dynamics (MD) simulations to investigate in-depth conformational changes in DNA containing an AP site and in a complex of this DNA with AP endonuclease 1 (APE1).
View Article and Find Full Text PDFElectron paramagnetic resonance (EPR) based nanometer distance measurements at ambient temperatures are of particular interest for structural biology applications. The nitroxide spin labels commonly used in EPR reveal relatively short transverse relaxation under these conditions, which limits their use for detecting static dipolar interactions. At the same time, the longitudinal relaxation of nitroxide spin labels is still long enough to allow using them as 'pumped' species in the relaxation induced dipolar modulation enhancement (RIDME) experiment where the detection is carried out on the slower relaxing triarylmethyl (TAM) spin labels.
View Article and Find Full Text PDFTriarylmethyl (trityl, TAM) radicals are a promising class of spin labels for nanometer-scale distance measurements in biomolecules at physiological temperatures. However, to date, existing approaches to site-directed TAM labeling of DNA have been limited to label attachment at the termini of oligonucleotides, thus hindering a majority of demanded applications. Herein, we report a new versatile strategy for TAM attachment at arbitrary sites of nucleic acids.
View Article and Find Full Text PDFIn glassy substances and biological media, dynamical transitions are observed in neutron scattering that manifests itself as deviations of the translational mean-squared displacement, 〈x〉, of hydrogen atoms from harmonic dynamics. In biological media, the deviation occurs at two temperature intervals, at ∼100-150 K and at ∼170-230 K, and it is attributed to the motion of methyl groups in the former case and to the transition from harmonic to anharmonic or diffusive motions in the latter case. In this work, electron spin echo (ESE) spectroscopy-a pulsed version of electron paramagnetic resonance-is applied to study the spin relaxation of nitroxide spin probes and labels introduced in molecular glass former o-terphenyl and in protein lysozyme.
View Article and Find Full Text PDFSpin labels selectively attached to biomolecules allow high-accuracy nanoscale distance measurements using pulsed electron paramagnetic resonance (EPR), in many cases providing the only access to the structure of complex biosystems. Triarylmethyl (TAM) radicals have recently emerged as a new class of spin labels expanding the applicability of the method to physiological temperatures. Along with other factors, the accuracy of the obtained distances crucially relies on the understanding of interactions between biomolecules and spin labels.
View Article and Find Full Text PDFPulsed dipolar electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for structural studies of biomolecules and their complexes. This method, whose applicability has been recently extended to room temperatures, requires immobilization of the studied biosystem to prevent averaging of dipolar couplings; at the same time, the modification of native conformations by immobilization must be avoided. In this work, we provide first demonstration of room-temperature EPR distance measurements in nucleic acids using saccharides trehalose, sucrose, and glucose as immobilizing media.
View Article and Find Full Text PDFPulse dipole-dipole electron paramagnetic resonance (EPR) spectroscopy (double electron-electron resonance [DEER] or pulse electron-electron double resonance [PELDOR] and double quantum coherence [DQC]) allows for measurement of distances in biomolecules and can be used at low temperatures in a frozen solution. Recently, the possibility of distance measurement in a nucleic acid at a physiological temperature using pulse EPR was demonstrated. In these experiments, triarylmethyl (TAM) radicals with long memory time of the electron spin served as a spin label.
View Article and Find Full Text PDFTrehalose has been recently promoted as efficient immobilizer of biomolecules for room-temperature EPR studies, including distance measurements between attached nitroxide spin labels. Generally, the structure of nitroxide influences the electron spin relaxation times, being crucial parameters for room-temperature pulse EPR measurements. Therefore, in this work we investigated a series of nitroxides with different substituents adjacent to NO-moiety including spirocyclohexane, spirocyclopentane, tetraethyl and tetramethyl groups.
View Article and Find Full Text PDFSelf-assembly of DNA concatemers from native duplexes and those containing non-nucleotidic bridges of varying polarity composed of repeating oligo(ethylene glycol) phosphates -O(CH2CH2O)(n)PO2- or α,Ω-alkanediol phosphates -O(CH2)10OPO2(-)- units was compared. The structures obtained were characterised by polyacrylamide gel electrophoresis, enzymatic digestion and AFM. Our results have revealed that chemically-modified duplexes favour self-termination of concatemer growth and yield up to 35% of nanosized DNA rings.
View Article and Find Full Text PDFTriarylmethyl (trityl, TAM) based spin labels represent a promising alternative to nitroxides for EPR distance measurements in biomolecules. Herewith, we report synthesis and comparative study of series of model DNA duplexes, 5'-spin-labeled with TAMs and nitroxides. We have found that the accuracy (width) of distance distributions obtained by double electron-electron resonance (DEER/PELDOR) strongly depends on the type of radical.
View Article and Find Full Text PDFResolving the nanometer-scale structure of biomolecules in natural conditions still remains a challenging task. We report the first distance measurement in nucleic acid at physiological temperature using electron paramagnetic resonance (EPR). The model 10-mer DNA duplex has been labeled with reactive forms of triarylmethyl radicals and then immobilized on a sorbent in water solution and investigated by double quantum coherence EPR.
View Article and Find Full Text PDF