Publications by authors named "Georgios Vassilakos"

Muscle atrophy occurs as a result of prolonged periods of reduced mechanical stimulation associated with injury or disease. The growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and load sensing pathways can both aid in recovery from disuse through their shared downstream signaling, but their relative contributions to these processes are not fully understood. The goal of this study was to determine whether reduced muscle IGF-1 altered the response to disuse and reloading.

View Article and Find Full Text PDF

Introduction: Dysferlin loss-of-function mutations cause muscular dystrophy, accompanied by impaired membrane repair and muscle weakness. Growth promoting strategies including insulin-like growth factor 1 (IGF-1) could provide benefit but may cause strength loss or be ineffective. The objective of this study was to determine whether locally increased IGF-1 promotes functional muscle hypertrophy in dysferlin-null (Dysf ) mice.

View Article and Find Full Text PDF

The insulin-like growth factor (IGF) pathway is essential for promoting growth and survival of virtually all tissues. It bears high homology to its related protein insulin, and as such, there is an interplay between these molecules with regard to their anabolic and metabolic functions. Skeletal muscle produces a significant proportion of IGF-1, and is highly responsive to its actions, including increased muscle mass and improved regenerative capacity.

View Article and Find Full Text PDF

Insulin-like growth factors (IGFs) are essential for local skeletal muscle growth and organismal physiology, but these actions are entwined with glucose homeostasis through convergence with insulin signaling. The objective of this work was to determine whether the effects of IGF-I on growth and metabolism could be separated. We generated muscle-specific IGF-I-deficient (MID) mice that afford inducible deletion of Igf1 at any age.

View Article and Find Full Text PDF