We introduce a novel and sensitive ns-resolved atomic magnetometer, which is at least three orders of magnitude faster than conventional magnetometers. We use the magnetic field dependence of the hyperfine beating of high-density spin-polarized H atoms, produced from the rapid photodissociation of HCl gas with sub-ns laser pulses and measured with a pick-up coil, to demonstrate ns-resolved magnetometry, and project sensitivity of a few nT for a spin-projection-limited sensor with 10 nl measurement volume after 1 ns measurement time. The magnetometer will allow ultrafast continuous -field measurements in many fields, including spin chemistry, spin physics, and plasma physics.
View Article and Find Full Text PDFIn this Letter, we demonstrate magnetogravitational matter-wave lensing as a novel tool in atom-optics in atomtronic waveguides. We collimate and focus matter waves originating from Bose-Einstein condensates and ultracold thermal atoms in ring-shaped time-averaged adiabatic potentials. We demonstrate "delta-kick cooling" of Bose-Einstein condensates, reducing their expansion energies by a factor of 46 down to 800 pK.
View Article and Find Full Text PDFSome of the most sensitive and precise measurements-for example, of inertia, gravity and rotation-are based on matter-wave interferometry with free-falling atomic clouds. To achieve very high sensitivities, the interrogation time has to be very long, and consequently the experimental apparatus needs to be very tall (in some cases reaching ten or even one hundred metres) or the experiments must be performed in microgravity in space. Cancelling gravitational acceleration (for example, in atomtronic circuits and matter-wave guides) is expected to result in compact devices with extended interrogation times and therefore increased sensitivity.
View Article and Find Full Text PDFWe present a simple high-precision method to quickly and accurately measure the diameters of Gaussian beams, Airy spots, and central peaks of Bessel beams ranging from sub-millimeter to many centimeters without specialized equipment. By simply moving a wire through the beam and recording the relative losses using an optical power meter, one can easily measure the beam diameters with a precision of 1%. The accuracy of this method has been experimentally verified for Gaussian beams down to the limit of a commercial slit-based beam profiler (3%).
View Article and Find Full Text PDFQuantum mechanics dictates that a continuous measurement of the position of an object imposes a random quantum back-action (QBA) perturbation on its momentum. This randomness translates with time into position uncertainty, thus leading to the well known uncertainty on the measurement of motion. As a consequence of this randomness, and in accordance with the Heisenberg uncertainty principle, the QBA puts a limitation-the so-called standard quantum limit-on the precision of sensing of position, velocity and acceleration.
View Article and Find Full Text PDFMagnetic fields generated by human and animal organs, such as the heart, brain and nervous system carry information useful for biological and medical purposes. These magnetic fields are most commonly detected using cryogenically-cooled superconducting magnetometers. Here we present the first detection of action potentials from an animal nerve using an optical atomic magnetometer.
View Article and Find Full Text PDF