Publications by authors named "Georgios Mikaelian"

Berubicin, a chemotherapy medication belonging to the class of anthracyclines, is simulated in double-stranded DNA sequences and cyclodextrins in an aqueous environment via full-atom molecular dynamics simulations on the time scale of microseconds. The drug is studied in both the neutral and protonated states so as to better comprehend the role of its charge in the formed complexes. The noncovalent berubicin-DNA and berubicin-cyclodextrin complexes are investigated in detail, paying special attention to their thermodynamic description by employing the double decoupling method, the solvent balance method, the weighted solvent accessible surface model, and the linear interaction energy method.

View Article and Find Full Text PDF

Fluoxetine, which is a well-known antidepressant drug, is studied in hydrated cholesterol-free and cholesterol-containing lipid bilayers through unbiased and biased atomistic molecular dynamics simulations. The latter are conducted for the calculation of the potential of mean force (PMF) of fluoxetine along an axis perpendicular to the two leaflets of the bilayer. The PMF indicates that the drug prefers to reside inside the lipid phase and allows us to calculate important thermodynamic properties, such as the Gibbs energy difference of partitioning from the water to the lipid phase and the Gibbs energy barrier for hopping events between the two leaflets of the bilayer.

View Article and Find Full Text PDF

This article presents atomistic molecular dynamics and umbrella sampling simulations of levodopa at various concentrations in hydrated cholesterol-free 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Levodopa is the standard medication for Parkinson's disease and is marketed under various trade names; in the context of this article, the levodopa molecule is mostly studied in its zwitterionic form but some results concerning the neutral levodopa are presented as well for comparison purposes. The motivation is to study in detail how levodopa behaves in different hydrated lipid membranes, primarily from the thermodynamic point of view, and reveal aspects of mechanism of its permeation through them.

View Article and Find Full Text PDF