Black holes are unique among astrophysical sources: they are the simplest macroscopic objects in the Universe, and they are extraordinary in terms of their ability to convert energy into electromagnetic and gravitational radiation. Our capacity to probe their nature is limited by the sensitivity of our detectors. The LIGO/Virgo interferometers are the gravitational-wave equivalent of Galileo's telescope.
View Article and Find Full Text PDFWe present a generic criterion which can be used in gravitational-wave data analysis to distinguish an extreme-mass-ratio inspiral into a Kerr background spacetime from one into a non-Kerr spacetime. We exploit the fact that when an integrable system, such as the system that describes geodesic orbits in a Kerr spacetime, is perturbed, the tori in phase space which initially corresponded to resonances disintegrate so as to form Birkhoff chains on a surface of section. The KAM curves of the islands in such a chain share the same ratio of frequencies, even though the frequencies themselves vary from one KAM curve to another inside an island.
View Article and Find Full Text PDF