Here we investigate the evolutionary dynamics of several kinds of modern cultural artefacts-pop music, novels, the clinical literature and cars-as well as a collection of organic populations. In contrast to the general belief that modern culture evolves very quickly, we show that rates of modern cultural evolution are comparable to those of many animal populations. Using time-series methods, we show that much of modern culture is shaped by either stabilizing or directional forces or both and that these forces partly regulate the rates at which different traits evolve.
View Article and Find Full Text PDFScreening references is a time-consuming step necessary for systematic reviews and guideline development. Previous studies have shown that human effort can be reduced by using machine learning software to prioritise large reference collections such that most of the relevant references are identified before screening is completed. We describe and evaluate RobotAnalyst, a Web-based software system that combines text-mining and machine learning algorithms for organising references by their content and actively prioritising them based on a relevancy classification model trained and updated throughout the process.
View Article and Find Full Text PDFCitation screening, an integral process within systematic reviews that identifies citations relevant to the underlying research question, is a time-consuming and resource-intensive task. During the screening task, analysts manually assign a label to each citation, to designate whether a citation is eligible for inclusion in the review. Recently, several studies have explored the use of active learning in text classification to reduce the human workload involved in the screening task.
View Article and Find Full Text PDFThe increasing growth of literature in biodiversity presents challenges to users who need to discover pertinent information in an efficient and timely manner. In response, text mining techniques offer solutions by facilitating the automated discovery of knowledge from large textual data. An important step in text mining is the recognition of concepts via their linguistic realisation, i.
View Article and Find Full Text PDFSystematic reviews require expert reviewers to manually screen thousands of citations in order to identify all relevant articles to the review. Active learning text classification is a supervised machine learning approach that has been shown to significantly reduce the manual annotation workload by semi-automating the citation screening process of systematic reviews. In this paper, we present a new topic detection method that induces an informative representation of studies, to improve the performance of the underlying active learner.
View Article and Find Full Text PDFHistorical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale digitisation efforts. However, it can be difficult for researchers to explore and search such large volumes of data in an efficient manner. Text mining (TM) methods can help, through their ability to recognise various types of semantic information automatically, e.
View Article and Find Full Text PDFBackground: Identifying relevant studies for inclusion in a systematic review (i.e. screening) is a complex, laborious and expensive task.
View Article and Find Full Text PDFBilingual dictionaries for technical terms such as biomedical terms are an important resource for machine translation systems as well as for humans who would like to understand a concept described in a foreign language. Often a biomedical term is first proposed in English and later it is manually translated to other languages. Despite the fact that there are large monolingual lexicons of biomedical terms, only a fraction of those term lexicons are translated to other languages.
View Article and Find Full Text PDFBackground: U-Compare is a text mining platform that allows the construction, evaluation and comparison of text mining workflows. U-Compare contains a large library of components that are tuned to the biomedical domain. Users can rapidly develop biomedical text mining workflows by mixing and matching U-Compare's components.
View Article and Find Full Text PDF