This work presents a comprehensive approach to reduce bias in word embedding vectors and evaluate the impact on various Natural Language Processing (NLP) tasks. Two GloVe variations (840B and 50) are debiased by identifying the gender direction in the word embedding space and then removing or reducing the gender component from the embeddings of target words, while preserving useful semantic information. Their gender bias is assessed through the Word Embedding Association Test.
View Article and Find Full Text PDFMethods on modelling the human brain as a Complex System have increased remarkably in the literature as researchers seek to understand the underlying foundations behind cognition, behaviour, and perception. Computational methods, especially Graph Theory-based methods, have recently contributed significantly in understanding the wiring connectivity of the brain, modelling it as a set of nodes connected by edges. Therefore, the brain's spatiotemporal dynamics can be holistically studied by considering a network, which consists of many neurons, represented by nodes.
View Article and Find Full Text PDF