Inorg Chem
September 2011
The boron dipyrrin (Bodipy) chromophore was combined with either a free-base or a Zn porphyrin moiety (H(2)P and ZnP respectively), via an easy synthesis involving a cyanuric chloride bridging unit, yielding dyads Bodipy-H(2)P (4) and Bodipy-ZnP (5). The photophysical properties of Bodipy-H(2)P (4) and Bodipy-ZnP (5) were investigated by UV-Vis absorption and emission spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. The comparison of the absorption spectra and cyclic voltammograms of dyads Bodipy-H(2)P (4) and Bodipy-ZnP (5) with those of their model compounds Bodipy, H(2)P, and ZnP shows that the spectroscopic and electrochemical properties of the constituent chromophores are essentially retained in the dyads indicating negligible interaction between them in the ground state.
View Article and Find Full Text PDFRelative kinetic data were determined for the 5-endo-trig cyclization of radical 12 compared to hydrogen abstraction from (TMS)(3)SiH in the temperature range of 344-430 K, which allows for the estimation of a rate constant of 2 x 10(4) s(-)(1) at 298 K with an activation energy of ca. 9 kcal/mol for the cyclization process. The 5-endo-trig cyclization of a variety of radicals that afford five-membered nitrogen-containing heterocycles was addressed computationally at the UB3LYP/6-31G level.
View Article and Find Full Text PDF